

How can a function call itself?

What happens when this function is called?

```
void message() {
   cout << "This is a recursive function.\n";
   message();
}
int main() {
   message();
}</pre>
```

How can a function call itself?

• Infinite Recursion:

This is a recursive function. This is a recursive function.

Recursive message() modified

How about this one?

```
void message(int n) {
    if (n > 0) {
        cout << "This is a recursive function.\n";
        message(n-1);
    }
}
int main() {
    message(5);
}</pre>
```

Tracing the calls

• 6 nested calls to message:

```
message(5):
outputs "This is a recursive function"
calls message(4):
outputs "This is a recursive function"
calls message(3):
outputs "This is a recursive function"
calls message(2):
outputs "This is a recursive function"
calls message(1):
outputs "This is a recursive function"
calls message(0):
does nothing, just returns
```

depth of recursion (#times it calls itself) = 5^e

Why use recursion?

- It is true that recursion is never required to solve a problem
 - Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call
 + return mechanism uses extra resources
- Some repetitive problems are more easily and naturally solved with recursion
- Iterative solution may be unreadable to humans

Why use recursion?

- Recursion is the primary method of performing repetition in most functional languages.
 - Implementations of functional languages are designed to process recursion efficiently
 - Iterative constructs added to functional languages often don't fit well in the functional context.
- Once programmers adapt to solving problems using recursion, the code produced is generally shorter, more elegant, easier to read and debug.

How to write recursive functions

- Branching is required (If or switch)
- Find a base case
 - one or more values for which the result of the function is known (no repetition required to solve it)
 - no recursive call is allowed here
- Develop the recursive case
 - For a given argument (say n), assume the function works for a smaller value (n-1).
 - Use the result of calling the function on n-1 to form a solution for n

Recursive function example factorial

Mathematical definition of n! (factorial of n)

if n=0 then n! = 1if n>0 then $n! = 1 \times 2 \times 3 \times \dots \times n$

- What is the base case for n?
- If we assume (n-1)! can be computed, how can we get n! from that?

Recursive function example factorial

Mathematical definition of n! (factorial of n)

if n=0 then n! = 1 $n! = 1 \times 2 \times 3 \times ... \times n$ if n>0 then

- What is the base case for n?
 - n=0 (result is 1)
- If we assume (n-1)! can be computed, how can we get n! from that?

11

- n! = n * (n-1)!

Recursive function example factorial

```
int factorial(int n) {
   if (n==0)
      return 1;
  else
      return n * factorial(n-1);
int main() {
```

3

```
int number;
cout << "Enter a number ";</pre>
cin >> number;
cout << "The factorial of " << number << " is "
     << factorial(number) << endl;
```

```
12
```

10

Tracing the calls

• Calls to factorial:

```
factorial(4):
  return 4 * factorial(3);
  calls factorial(3):
    return 3 * factorial(2);
    calls factorial(2):
      return 2 * factorial(1);
      calls factorial(1):
      return 1 * factorial(0);
      calls factorial(0):
      return 1;
```

• each return statement must wait for the result of the recursive call to compute its result

Tracing the calls

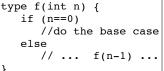
· Calls to factorial:

```
factorial(4):
  return 4 * factorial(3); =4*6=24
  calls factorial(3):
    return 3 * factorial(2); =3*2=6
    calls factorial(2):
       return 2 * factorial(1); =2*1=2
       calls factorial(1):
       return 1 * factorial(0); =1*1=1
       calls factorial(0):
       return 1;
```

- Every call except the last makes a recursive call
- Each call must make the argument smaller

Recursive functions over lists

Many recursive functions (over integers) look
 like this:



- You can write recursive functions over lists using the length of the list instead of n
 - base case: length=0 ==> empty list
 - recursive case: assume f works for list of length n-1, what is the answer for a list with one more elegent?

Recursive function example

- Recursive function to compute sum of a list of numbers
- What is the base case?
 - length=0 (empty list) sum = 0
- If we assume we can sum the first n-1 items in the list, how can we get the sum of the whole list from that?
 - sum (list) = sum (list[0..n-2]) + list[n-1]

14

Recursive function example sum of a list: array

```
int sum(int a[], int size) { //size is number of elems
    if (size==0)
        return 0;
    else
        return a[size-1] + sum(a,size-1);
}
For a list with size = 4:
        a[3] + sum(a,3)=
        a[3] + a[2] + sum(a,2)=
        a[3] + a[2] + a[1] + sum(a,1)=
        a[3] + a[2] + a[1] + a[0] + sum(a,0)=
        a[3] + a[2] + a[1] + a[0] + 0
```

17

Recursive function example sum of a list: vector

```
int sum(vector<int> v) {
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sum(v);
    }
```

- Aren't we changing the vector argument each time?
 - No (why not?)

}

- So something else bad is happening each time.

Recursive function example sum of a list: vector

```
int sumRec(vector<int> & v) {
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sumRec(v);
    }
}
int sum (const vector<int> & v) {
    vector<int> v1 (v); //make one copy
    return sumRec(v1);
```

• Sometimes an auxiliary or driver function is needed to set things up before starting recursion.

Recursive function example sum of a list: linked list • Add a sum function to list_3358_pointers.h // this is the public one int List_3358::sum() { return sumNodes(head); } // this one is private int List_3358::sumNodes(Node *p) { if (p==NULL) return 0; else { int x = p->value; return x + sumNodes(p->next); }

20

18

Summary of the list examples

 How to determine empty list, single element, and the shorter list to perform recursion on.

	Array	Vector	Linked list
Base case	size==0	v.size()==0	p==NULL
last(or first) element	a[size-1]	v.back()	p->value (first element)
shorter list	use size-1	v.pop_back()*	p->next

*may need to copy original vector

21

Recursive function example count characters in a string

- Recursive function to count the number of times. a specific character appears in a string
- We will use the string member function substr to make a smaller string
 - str.substr (int pos, int length);
 - pos is the starting position in str
 - length is the number of characters in the result

lo th

string x = "hello there"; cout << s.substr(3,5);</pre>

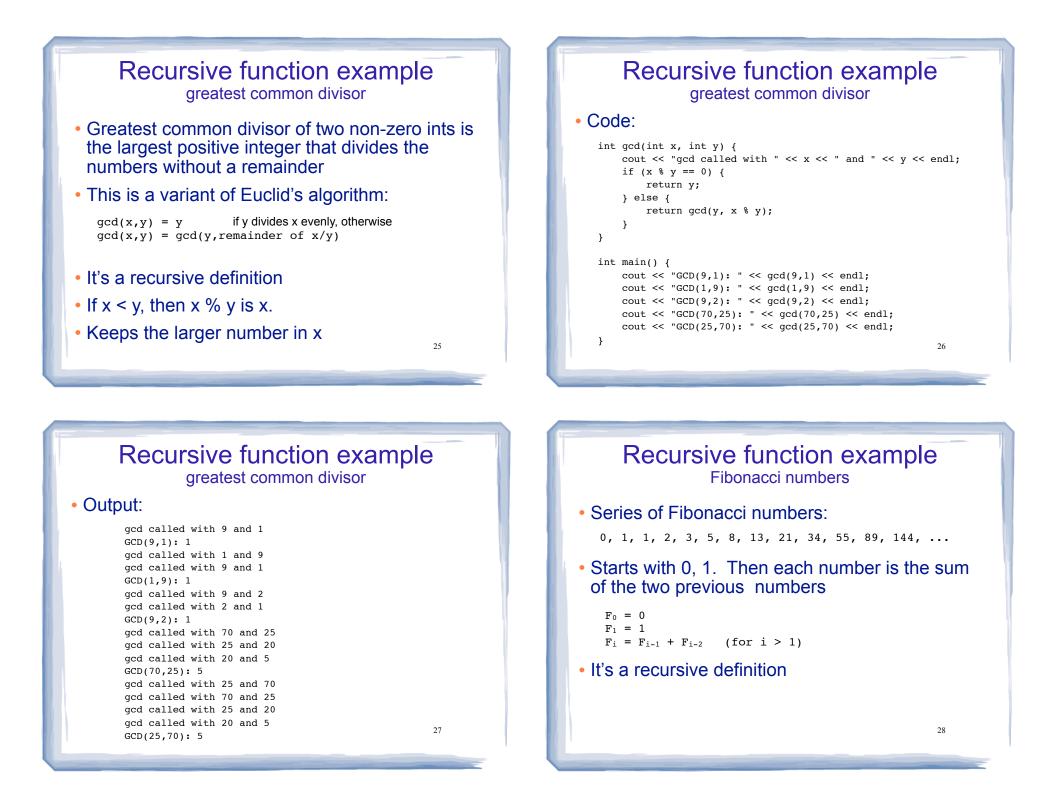
22

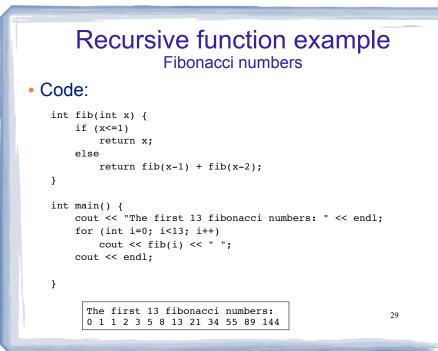
Recursive function example count characters in a string

```
int numChars(char search, string str) {
    if (str.empty()) {
        return 0;
    } else {
        if (str[0]==search)
            return 1+numChars(search, str.substr(1,str.size()));
        else
            return numChars(search, str.substr(1,str.size()));
}
int main() {
  string a = "hello";
  cout << a << numChars('l',a) << endl;</pre>
                                                         23
```

Three required properties of recursive functions

- A Base case
 - a non-recursive branch of the function body.
 - must return the correct result for the base case
- Smaller caller
 - each recursive call must pass a smaller version of the current argument.
- Recursive case
 - assuming the recursive call works correctly, the code must produce the correct answer for the current argument. 24





Recursive function example Fibonacci numbers Modified code to count the number of calls to fib: int fib(int x, int &count) { count++; if (x<=1) return x; else return fib(x-1, count) + fib(x-2, count); } int main() { cout << "The first 14 fibonacci numbers: " << endl:</pre> for (int i=0; i<14; i++) {</pre> int count = 0: int x = fib(i, count);cout << "fib (" << i << ")= " << x << " # of recursive calls to fib = " << count << endl; } 30

Recursive function example Fibonacci numbers

• Counting calls to fib: output

The first 14 fibonacci numbers: fib (0)= 0 # of recursive calls to fib = 1 fib (1)= 1 # of recursive calls to fib = 1 fib (2)= 1 # of recursive calls to fib = 3 fib (3)= 2 # of recursive calls to fib = 5 fib (4)= 3 # of recursive calls to fib = 9 fib (5)= 5 # of recursive calls to fib = 15 fib (6)= 8 # of recursive calls to fib = 25 fib (7)= 13 # of recursive calls to fib = 41 fib (8)= 21 # of recursive calls to fib = 67 fib (9)= 34 # of recursive calls to fib = 109 fib (10)= 55 # of recursive calls to fib = 177 fib (11)= 89 # of recursive calls to fib = 287 fib (12)= 144 # of recursive calls to fib = 465 fib (13)= 233 # of recursive calls to fib = 753 ...

fib (40)= 102,334,155 # of recursive calls to fib = 331,160,281

Recursive function example Fibonacci numbers

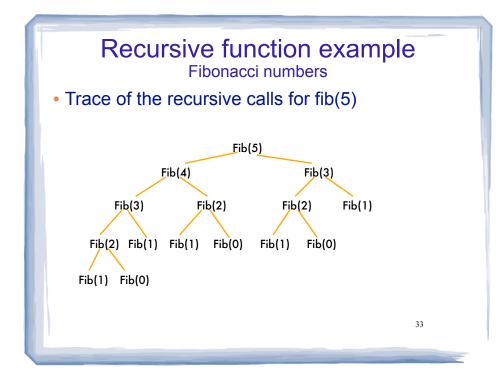
Why are there so many calls to fib?

fib(n) calls fib(n-1) and fib(n-2)

- Say it computes fib(n-2) first.
- When it computers fib(n-1), it computes fib(n-2) again

```
fib(n-1) calls fib((n-1)-1) and fib((n-1)-2)
= fib(n-2) and fib (n-3)
```

- It's not just double the work. It's double the work for each recursive call.
- Each recursive call does more and more redundant work



Recursive function example Fibonacci numbers

- The number of recursive calls is
 - larger than the Fibonacci number we are trying to compute
 - exponential, in terms of n
- Never solve the same instance of a problem in separate recursive calls.
 - make sure f(m) is called only once for a given m

34

Binary Search

- Find an item in a list, return the index or -1
- Works only for SORTED lists
- Compare target value to middle element in list.
 - if equal, then return index
 - if less than middle elem, search in first half
 - if greater than middle elem, search in last half
- If search list is narrowed down to 0 elements, return -1

35

Divide and conquer style algorithm

Binary Search Iterative version

int binarySearch(const int array[], int size, int value)

```
int first = 0,
                       // First array element
last = size -1.
                       // Last array element
middle,
                       // Mid point of search
                       // Position of search value
position = -1:
bool found = false:
                       // Flag
while (!found && first <= last) {</pre>
    middle = (first + last) / 2;
                                      // Calculate mid point
    if (array[middle] == value) {
                                     // If value is found at mid
        found = true;
        position = middle;
    else if (array[middle] > value) // If value is in lower half
        last = middle - 1;
    else
                                      // If value is in upper half
        first = middle + 1:
}
return position;
```

