
1

Sorting Algorithms
Chapter 9

CS 3358
Summer I 2012

Jill Seaman

2

What is sorting?

 Sort: rearrange the items in a list
into ascending or descending order
- numerical order
- alphabetical order
- etc.

55 112 78 14 20 179 42 67 190 7 101 1 122 170 8

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

3

Why is sorting important?

 Searching in a sorted list is much easier than
searching in an unsorted list.

 Especially for people
- dictionary entries
- phone book
- card catalog in library
- bank statement: transactions in date order

 Most of the data displayed by computers is
sorted.

4

Sorting

 Sorting is one of the most intensively studied
operations in computer science

 There are many different sorting algorithms

 The run-time analyses of each algorithm are
well-known.

5

Sorting algorithms

 Selection sort
 Insertion sort
 Bubble sort

 Merge sort
 Quicksort

 Heap sort (later, when we talk about heaps)
6

Selection sort

 There is a pass for each position (0..size-1)
 On each pass, the smallest (minimum) element

in the rest of the list is exchanged (swapped)
with element at the current position.

 The first part of the list (already processed) is
always sorted

 Each pass increases the size of the sorted
portion.

5

Selection Sort: Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

36

24

10

 6

12

U
N
S
O
R
T
E
D

6

Selection Sort: End Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

 6

24

10

 36

12

U
N
S
O
R
T
E
D

SORTED

7

SORTED

Selection Sort: Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

 6

24

10

 36

12

U
N
S
O
R
T
E
D

8

Selection Sort: End Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

U
N
S
O
R
T
E
D

SORTED

9

Selection Sort: Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

U
N
S
O
R
T
E
D

SORTED

10

Selection Sort: End Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

36

24

S
O
R
T
E
D

UNSORTED

11

Selection Sort: Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

36

24

S
O
R
T
E
D

UNSORTED

12

Selection Sort: End Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

24

36

S
O
R
T
E
D

15

Selection sort: code
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
 int minIndex = start;
 for (int i = start+1; i < size; i++)
 if (values[i] < values[minIndex])
 minIndex = i;
 return minIndex;
}

template<class ItemType>
void selectionSort (ItemType values[], int size) {
 int min;
 for (int index = 0; index < (size -1); index++) {
 min = minIndex(values, SIZE, index);
 swap(values[min],values[index]);
 }
}

16

Selection sort: runtime analysis

 N is the number of elements in the list
 Outer loop (in selectionSort) executes N times
 Inner loop (in minIndex) executes N-1, then N-2,

then N-3, ... then once.
 Total number of comparisons (in inner loop):

(N-1) + (N-2) + . . . + 2 + 1

Note: N + (N-1) + (N-2) + . . . + 2 + 1 == N(N+1)/2

=N2/2 - N/2

O(N2)

=N2/2 + N/2

(N-1) + (N-2) + . . . + 2 + 1 =N2/2 + N/2 - NSubtract N from both sides:

17

Insertion sort

 There is a pass for each position (0..size-1)
 The front of the list remains sorted.
 On each pass, the next element is placed in its

proper place among the already sorted
elements.

 Like playing a card game, if you keep your hand
sorted, when you draw a new card, you put it in
the proper place in your hand.

 Each pass increases the size of the sorted
portion.

22

Insertion Sort: Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

36

24

10

 6

12

SORTED

U
N
S
O
R
T
E
D

23

Insertion Sort: Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

24

36

10

 6

12

U
N
S
O
R
T
E
D

SORTED

24

Insertion Sort: Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

10

24

36

 6

12 UNSORTED

S
O
R
T
E
D

25

Insertion Sort: Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

S
O
R
T
E
D

UNSORTED

26

Insertion Sort: Pass Five

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

24

36

S
O
R
T
E
D

23

Insertion sort: code

template<class ItemType>
void insertionSort (ItemType a[], int size) {

 for (int index = 0; index < size; index++) {
 ItemType tmp = a[index]; // next element

 int j = index; // start from the end

 // find tmp's place, AND shift bigger elements up
 while (j > 0 && tmp < a[j-1]) {
 a[j] = a[j-1]; // shift
 j--;
 }
 a[j] = tmp; // put tmp in its place
 }
}

24

Insertion sort: runtime analysis

 Very similar to Selection sort
 Total number of comparisons (in inner loop):

- At most j+1, which is 1, then 2, then 3 ... up to N
 So it’s

O(N2)

 N + (N-1) + (N-2) + . . . + 2 + 1 == N(N+1)/2

25

Bubble sort

 On each pass:
- Compare first two elements. If the first is bigger, they

exchange places (swap).
- Compare second and third elements. If second is

bigger, exchange them.
- Repeat until last two elements of the list are

compared.
 Repeat this process until a pass completes with

no exchanges

26

Bubble sort
how does it work?

 At the end of the first pass, the largest element is
moved to the end (it’s bigger than all its
neighbors)

 At the end of the second pass, the second largest
element is moved to just before the last element.

 The back end (tail) of the list remains sorted.
 Each pass increases the size of the sorted

portion.
 No exchanges implies each element is smaller

than its next neighbor (so the list is sorted).

27

Bubble sort
Example

 7 2 3 8 9 1 7 > 2, swap
 2 7 3 8 9 1 7 > 3, swap
 2 3 7 8 9 1 !(7 > 8), no swap
 2 3 7 8 9 1 !(8 > 9), no swap
 2 3 7 8 9 1 9 > 1, swap
 2 3 7 8 1 9 finished pass 1, did 3 swaps

Note: largest element is in last position

28

Bubble sort
Example

 2 3 7 8 1 9 2<3<7<8, no swap, !(8<1), swap
 2 3 7 1 8 9 (8<9) no swap
 finished pass 2, did one swap

 2 3 7 1 8 9 2<3<7, no swap, !(7<1), swap
 2 3 1 7 8 9 7<8<9, no swap
 finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions

29

Bubble sort
Example

 2 3 1 7 8 9 2<3, !(3<1) swap, 3<7<8<9
 2 1 3 7 8 9
 finished pass 4, did one swap
 2 1 3 7 8 9 !(2<1) swap, 2<3<7<8<9
 1 2 3 7 8 9
 finished pass 5, did one swap
 1 2 3 7 8 9 1<2<3<7<8<9, no swaps
 finished pass 6, no swaps, list is sorted!

30

Bubble sort: code

template<class ItemType>
void bubbleSort (ItemType a[], int size) {

 bool swapped;
 do {
 swapped = false;
 for (int i = 0; i < (size-1); i++) {
 if (a[i] > a[i+1]) {
 swap(a[i],a[i+1]);
 swapped = true;
 }
 }
 } while (swapped);
}

31

Bubble sort: runtime analysis

 Each pass makes N-1 comparisons
 There will be at most N passes

- one to move the right element into each position
 So worst case it’s:

 What is the best case?

 Are there any sorting algorithms better than
O(N2)?

O(N2) (N-1)*N

32

Merge sort

 Divide and conquer!
 2 half-sized lists sorted recursively
 the algorithm:

- if list size is 0 or 1, return (base case) otherwise:
- recursively sort first half and then second half of list.
- merge the two sorted halves into one sorted list.

33

Merge sort
Example

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

 Recursively divide list in half:

Each of these are sorted (base case length = 1)
34

Merge sort
Example

 Calls to merge, starting from the bottom:

35

Merge sort: code

template<class ItemType>
void mergeSort (ItemType values[], int first, int last) {
 if (first < last) {
 int middle = (first + last) / 2;

 mergeSort(values, first, middle);
 mergeSort(values, middle+1, last);

 merge(values, first, middle, last);
 }
}

template<class ItemType>
void mergeSort (ItemType values[], int size) {
 mergeSort(values, 0, size-1);
}

36

Merge sort: code: merge
template<class ItemType>
void merge(ItemType values[], int first, int middle, int last) {

 ItemType tmp[last-first+1]; //temporary array
 int i=first; //index for left
 int j=middle+1; //index for right
 int k=0; //index for tmp

 while (i<=middle && j<=last) //merge, compare next elem from each array
 if (values[i] < values[j])
 tmp[k++] = values[i++];
 else
 tmp[k++] = values[j++];

 while (i<=middle) //merge remaining elements from left, if any
 tmp[k++] = values[i++];

 while (j<=last) //merge remaining elements from right, if any
 tmp[k++] = values[j++];

 for (int i = first; i <=last; i++) //copy from tmp array back to values
 values[i] = tmp[i-first];
}

37

Merge sort: runtime analysis

 Let’s start with a run-time analysis of merge
 Let’s use M as the size of the final list

- The merging requires M (or fewer) comparisons
+copies

- Copying from the temp array is M copies
- So merge is O(M)

38

Merge sort: runtime analysis

 The array can be subdivided into halves log2 N
times (there are log2 N levels in the graph)

 At each level in the graph,
- merge is called on each sub-list
- The total size of each sub-list added up is N
- So at each level in the graph, the total execution

time is O(N).
 So log2 N levels times O(N) at each level:

O(N Log N)

39

Merge sort
Runtime analysis

 O(N) work done at each level:

N

N

N

N
40

Merge sort: runtime analysis

 mergeSort has 2 recursive calls to itself.
 Why does it not have the exponential cost that

the Fibonacci algorithm had?

41

Quicksort

 Another divide and conquer!
 2 (hopefully) half-sized lists sorted recursively
 the algorithm:

- If list size is 0 or 1, return. otherwise:
- partition into two lists:

❖ pick one element as the pivot
❖ put all elements less than pivot in first half
❖ put all elements greater than pivot in second half

- recursively sort first half and then second half of list.
42

Quicksort
visualization

 A . . Z

 A . . L M . . Z

A . . F G . . L M . . R S . . Z

43

Quicksort
Example

44

Quicksort
Example cont.

45

Quicksort: partitioning
 Many algorithms, but must be efficient
 Goal: partition array A [start ... last]

 (start+last are indexes)
 Uses two indexes, i and j, starting from the front

and the back of the list
 the algorithm:

- swap pivot with last element (safekeeping)

pivot i j

5 6 4 6 3 12 19 5 6 4 63 1219

swap

46

Quicksort: partitioning

 the algorithm (continued):
- move small elements left and larger elements right.
- let i start at first element, and j start at last-1
- increment i while A[i] < pivot
- decrement j while A[j] > pivot

i j

5 6 4 63 1219

i j

5 6 4 63 1219

47

Quicksort: partitioning

 the algorithm (continued):
- When i and j have stopped, and i < j:
- swap A[i] and A[j]
- larger element goes to right side, smaller to left
- maintains: A[x] <= pivot for x<=i and A[x] >= pivot for x >= j

swap

i j

5 6 4 63 1219

i j

5 3 4 66 1219

48

Quicksort: partitioning
 the algorithm (continued):

- When i and j have met or crossed
(i >= j):

- swap A[i] and pivot
- puts pivot in place
- A[i] >= pivot (i stopped there)

so it stays on right side
- return i (the pivot index)

i j

5 3 4 66 1219

ij

5 3 4 66 1219

ij

5 3 4 6 6 12 19

49

Quicksort: partitioning

 What if all the elements are bigger than pivot?
- i never moves, j doesn’t stop until it reaches i
- pivot swapped with A[i], at front of list
- all elements are to right of pivot

 What if all the elements are smaller than pivot?
- i never stops until it is at the pivot, j doesn’t move
- pivot swapped with itself, stays at end of list
- all elements are to left of pivot

50

Quicksort: partitioning
elements equal to pivot

 What if A[i] or A[j] is equal to the pivot?
 should they stop?

- if all elements are identical:
i and j will always stop and swap at every position

- lots of unnecessary swapping, but pivot ends up in
the middle (good).

 if they don’t stop:
- if all elements are identical:

i never stops until it is at the pivot
- No swapping, but pivot ends up at end (bad)

51

Quicksort: code
version 1

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {

 if (first < last) { //at least two elems
 int pivotPoint;

 // partition and get the pivot point (the index)
 pivotPoint = partition(values, first, last);

 quickSort(values, first, pivotPoint - 1);
 quickSort(values, pivotPoint + 1, last);
 }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
 quickSort(values, 0, size-1);
}

52

Quicksort: code
version 1

template<class ItemType>
int partition(ItemType values[], int first, int last) {

 int mid = (first + last) / 2; //use middle value as pivot

 ItemType pivotValue = values[mid];
 swap(values[last], values[mid]); //move pivot to end

 int i,j;
 for (i=first, j=last-1; ;) {
 while (values[i] < pivotValue) {i++;}
 while (j > i && pivotValue < values[j]) {j--;}
 if (i < j) {
 swap(values[i++], values[j--]);
 }
 else
 break;
 }
 swap(values[i], values[last]); //replace pivot
 return i;
}

53

Quicksort: runtime analysis

 Choice of pivot point dramatically affects running
time.

 Best Case
- Pivot partitions the set into 2 equally sized subsets

at each stage of recursion: O(log N) levels
- Partitioning at each level is O(N)

❖ each element is compared to the pivot and maybe moved
one time

- O(N log N)

54

Quicksort: runtime analysis

 Worst Case
- Pivot is always the smallest element, partitioning the

set into one empty subset, and one of size N-1.
- Partitioning at each level is N

❖ T(N) = T(N-1) + N (time to sort N-1 plus N for partitioning)
❖ T(N) = N + N-1 + . . . + 2 + 1 (from unwinding the above)
❖ T(N) = N(N+1)/2

- O(N2)

Moral of the story: it pays to pick a good pivot point

55

Quicksort: runtime analysis

 Average Case
- Assume left side is equally likely to have a size of 0

or 1 or 2 or ... or N elements
- Partitioning at each level is still N

❖ T(N) = average cost of one recursive call, over all
subproblem sizes

❖ T(N) = (T(0) + T(1) + ... + T(N-1)) / N (divide by N to get avg)
❖ Cost for 2 recursive calls and one partitioning:
❖ T(N) = N + 2*((T(0) + T(1) + ... + T(N-1)) / N)
❖ Not a trivial proof . . . most of it is in the book.

- O(N log N)
56

Quicksort: Picking the pivot

 Goal: ensure the worst case doesn’t happen.
 Picking a pivot randomly is safe

- but random number generation can be expensive
 Using the first element:

- if the input is random, this is ok.
- if the input is sorted, all elements are in right half

worst case = O(N2)
 Use the median value (the middle value in order):

- perfectly divides into two even sides
- but you have to sort the list to find the median.

57

Quicksort: Picking the pivot
Median of Three method

 Pivot is the median of the first, last, and middle
value in the list.

 This is an “estimate” of the real median
- taking median of more than 3 is not worth the time

58

Quicksort: Picking the pivot
Median of Three method

 Median-of-Three partitioning:
- swap the values at first, last and middle so that:

- swap pivot (median) with A[last-1]
- start with i = first+1 and j=last-2
- increment i until it encounters an element smaller

than pivot
- decrement j until it encounters an element bigger

than pivot
- if (i<j) swap (A[i], A[j])

A[first] = smallest, A[middle]=median, A[last] = biggest

59

Quicksort: Picking the pivot
Median of Three method

pivot

5 6 4

6

3 12 192 13 6

5 6 4 3 12 192 6 13

A[left] = 2, A[center] = 13, A[right] = 6

Swap A[center] and A[right]

5 6 4 3 12 192 13

pivot

65 6 4 3 12192 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

Now we only need to partition A[left + 1, …, right – 2].
60

Quicksort: Small Arrays

 For very small arrays, quicksort does not
perform as well as insertion sort
➡ how small depends on many factors, such as the

time spent making a recursive call, the compiler, etc

 Do not use quicksort recursively for small arrays
➡ Instead, use a sorting algorithm that is efficient for

small arrays, such as insertion sort
➡ a cutoff between 5 and 20 is good.
➡ Note: median of three partitioning requires at least 3

elements anyway

61

Quicksort: code
version 2

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
 int pivotPoint;
 if (first + CUTOFF <= last) { // more than CUTOFF elems
 pivotPoint = partition(values, first, last);
 quickSort(values, first, pivotPoint - 1);
 quickSort(values, pivotPoint + 1, last);
 } else {
 insertionSort(values, first,last);
 }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
 quickSort(values, 0, size-1);
}

62

Quicksort: code
version 2template<class ItemType>

int partition(ItemType values[], int first, int last) {
 //sort first, mid, last
 int mid = (first + last) / 2;
 if (values[mid] < values[first]) swap(values[mid], values[first]);
 if (values[last] < values[first]) swap(values[last], values[first]);
 if (values[last] < values[mid]) swap(values[last], values[mid]);

 ItemType pivotValue = values[mid]; // move pivot to last-1
 swap(values[last-1], values[mid]);

 int i,j; // do the partitioning
 for (i=first+1, j=last-2; ;) {
 while (values[i] < pivotValue) {i++;}
 while (pivotValue < values[j]) {j--;}
 if (i < j)
 swap(values[i++], values[j--]);
 else
 break;
 }
 swap(values[i], values[last-1]); // put pivot back in place
 return i;
}

63

Quicksort vs MergeSort

 Both run in O(n log n)
 Compared with Quicksort, Mergesort has fewer

comparisons but more swapping (copying)
➡ (not yet able to verify the following):
➡ In Java, an element comparison is expensive but

moving elements is cheap. Therefore, Mergesort is
used in the standard Java library for generic sorting

➡ In C++, copying objects can be expensive while
comparing objects often is relatively cheap.
Therefore, quicksort is the sorting routine commonly
used in C++ libraries

