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What is sorting?

 Sort: rearrange the items in a list 
into ascending or descending order
- numerical order
- alphabetical order
- etc. 

55  112  78  14  20  179  42  67  190  7 101 1 122  170 8 

1  7  8  14  20  42  55  67  78  101  112  122 170 179 190 
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Why is sorting important?

 Searching in a sorted list is much easier than 
searching in an unsorted list.

 Especially for people
- dictionary entries
- phone book
- card catalog in library
- bank statement: transactions in date order 

 Most of the data displayed by computers is 
sorted.
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Sorting

 Sorting is one of the most intensively studied 
operations in computer science

 There are many different sorting algorithms

 The run-time analyses of each algorithm are 
well-known.



5

Sorting algorithms

 Selection sort
 Insertion sort
 Bubble sort

 Merge sort
 Quicksort

 Heap sort (later, when we talk about heaps)
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Selection sort

 There is a pass for each position (0..size-1)
 On each pass, the smallest (minimum) element 

in the rest of the list is exchanged (swapped) 
with element at the current position.

 The first part of the list (already processed) is 
always sorted

 Each pass increases the size of the sorted 
portion.
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Selection Sort: Pass One 
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Selection Sort: End Pass One 

  

values  [ 0 ]       

  [ 1 ]

  [ 2 ]
 
 

             [ 3 ]

   [ 4 ]

  6

24

10

 36

12

U
N
S
O
R
T
E
D

SORTED



7

SORTED

Selection Sort: Pass Two 
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Selection Sort: End Pass Two 
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Selection Sort: Pass Three 
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Selection Sort: End Pass Three 
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Selection Sort: Pass Four 
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Selection Sort: End Pass Four
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Selection sort: code
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
    int minIndex = start;
    for (int i = start+1; i < size; i++) 
        if (values[i] < values[minIndex]) 
            minIndex = i;
    return minIndex;
} 

template<class ItemType>
void selectionSort (ItemType values[], int size) {
    int min;
    for (int index = 0; index < (size -1); index++) {
        min = minIndex(values, SIZE, index);
        swap(values[min],values[index]);
    }
}
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Selection sort: runtime analysis

 N is the number of elements in the list
 Outer loop (in selectionSort) executes N times
 Inner loop (in minIndex) executes N-1, then N-2, 

then N-3, ... then once.
 Total number of comparisons (in inner loop):

(N-1) + (N-2) + . . . + 2 + 1

Note: N + (N-1) + (N-2) + . . . + 2 + 1 == N(N+1)/2

=N2/2 - N/2 

O(N2)

=N2/2 + N/2

(N-1) + (N-2) + . . . + 2 + 1 =N2/2 + N/2 - NSubtract N from both sides:
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Insertion sort

 There is a pass for each position (0..size-1)
 The front of the list remains sorted.
 On each pass, the next element is placed in its 

proper place among the already sorted 
elements.

 Like playing a card game, if you keep your hand 
sorted, when you draw a new card, you put it in 
the proper place in your hand.

 Each pass increases the size of the sorted 
portion.
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Insertion Sort: Pass One 
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Insertion Sort: Pass Two 
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Insertion Sort: Pass Three 
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Insertion Sort: Pass Four
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Insertion Sort: Pass Five
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Insertion sort: code

template<class ItemType>
void insertionSort (ItemType a[], int size) {
    
    for (int index = 0; index < size; index++) {
        ItemType tmp = a[index];   // next element 
        
        int j = index;       // start from the end

        // find tmp's place, AND shift bigger elements up
        while (j > 0 && tmp < a[j-1]) {
            a[j] = a[j-1];   // shift
            j--;
        }
        a[j] = tmp;          // put tmp in its place
    }
}
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Insertion sort: runtime analysis

 Very similar to Selection sort
 Total number of comparisons (in inner loop):

- At most j+1, which is 1, then 2, then 3 ... up to N
 So it’s

O(N2)

 N + (N-1) + (N-2) + . . . + 2 + 1 == N(N+1)/2



25

Bubble sort

 On each pass:
- Compare first two elements. If the first is bigger, they 

exchange places (swap). 
- Compare second and third elements.  If second is 

bigger, exchange them.
- Repeat until last two elements of the list are 

compared. 
 Repeat this process until a pass completes with 

no exchanges
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Bubble sort
how does it work?

 At the end of the first pass, the largest element is 
moved to the end (it’s bigger than all its 
neighbors)

 At the end of the second pass, the second largest 
element is moved to just before the last element.

 The back end (tail) of the list remains sorted.
 Each pass increases the size of the sorted 

portion.
 No exchanges implies each element is smaller 

than its next neighbor (so the list is sorted).
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Bubble sort
Example

 7 2 3 8 9 1  7 > 2, swap
 2 7 3 8 9 1  7 > 3, swap
 2 3 7 8 9 1  !(7 > 8), no swap
 2 3 7 8 9 1  !(8 > 9), no swap
 2 3 7 8 9 1  9 > 1, swap
 2 3 7 8 1 9  finished pass 1, did 3 swaps

Note: largest element is in last position
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Bubble sort
Example

 2 3 7 8 1 9    2<3<7<8, no swap, !(8<1), swap
 2 3 7 1 8 9    (8<9) no swap
 finished pass 2, did one swap

 2 3 7 1 8 9    2<3<7, no swap, !(7<1), swap
 2 3 1 7 8 9    7<8<9, no swap
 finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions
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Bubble sort
Example

 2 3 1 7 8 9     2<3, !(3<1) swap, 3<7<8<9
 2 1 3 7 8 9 
 finished pass 4, did one swap
 2 1 3 7 8 9     !(2<1) swap, 2<3<7<8<9
 1 2 3 7 8 9 
 finished pass 5, did one swap
 1 2 3 7 8 9      1<2<3<7<8<9, no swaps
 finished pass 6, no swaps, list is sorted!
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Bubble sort: code

template<class ItemType>
void bubbleSort (ItemType a[], int size) {

    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
            if (a[i] > a[i+1]) {                
                swap(a[i],a[i+1]);
                swapped = true;
            }
        }
    } while (swapped);
}
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Bubble sort: runtime analysis

 Each pass makes N-1 comparisons
 There will be at most N passes

- one to move the right element into each position
 So worst case it’s:

 What is the best case? 

 Are there any sorting algorithms better than 
O(N2)?

O(N2) (N-1)*N
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Merge sort

 Divide and conquer!
 2 half-sized lists sorted recursively
 the algorithm:

- if list size is 0 or 1, return (base case)  otherwise: 
- recursively sort first half and then second half of list.
- merge the two sorted halves into one sorted list. 
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Merge sort
Example

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

 Recursively divide list in half:

Each of these are sorted (base case length = 1)
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Merge sort
Example

 Calls to merge, starting from the bottom:
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Merge sort: code

template<class ItemType>
void mergeSort (ItemType values[], int first, int last) {
    if (first < last) {
        int middle = (first + last) / 2;

        mergeSort(values, first, middle);
        mergeSort(values, middle+1, last);
        
        merge(values, first, middle, last);
    }
}

template<class ItemType>
void mergeSort (ItemType values[], int size) {
    mergeSort(values, 0, size-1);
}
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Merge sort: code: merge
template<class ItemType>
void merge(ItemType values[], int first, int middle, int last) {
    
    ItemType tmp[last-first+1];  //temporary array
    int i=first;        //index for left
    int j=middle+1;     //index for right
    int k=0;            //index for tmp
    
    while (i<=middle && j<=last)   //merge, compare next elem from each array
        if (values[i] < values[j])
            tmp[k++] = values[i++];
        else
            tmp[k++] = values[j++];
    
    while (i<=middle)           //merge remaining elements from left, if any
        tmp[k++] = values[i++];
    
    while (j<=last)             //merge remaining elements from right, if any
        tmp[k++] = values[j++];
    
    for (int i = first; i <=last; i++) //copy from tmp array back to values
        values[i] = tmp[i-first];
} 
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Merge sort: runtime analysis

 Let’s start with a run-time analysis of merge
 Let’s use M as the size of the final list

- The merging requires M (or fewer) comparisons
+copies

- Copying from the temp array is M copies
- So merge is O(M)
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Merge sort: runtime analysis

 The array can be subdivided into halves log2 N 
times (there are log2 N levels in the graph)

 At each level in the graph, 
- merge is called on each sub-list
- The total size of each sub-list added up is N
- So at each level in the graph, the total execution 

time is O(N).
 So log2 N levels times O(N) at each level: 

O(N Log N)
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Merge sort
Runtime analysis

 O(N) work done at each level:

N

N

N

N
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Merge sort: runtime analysis

 mergeSort has 2 recursive calls to itself.
 Why does it not have the exponential cost that 

the Fibonacci algorithm had?
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Quicksort

 Another divide and conquer!
 2 (hopefully) half-sized lists sorted recursively
 the algorithm:

- If list size is 0 or 1, return.   otherwise: 
- partition into two lists:

❖ pick one element as the pivot
❖ put all elements less than pivot in first half
❖ put all elements greater than pivot in second half

- recursively sort first half and then second half of list. 
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Quicksort
visualization

                                       A . . Z

             A . . L                                           M . . Z

A . . F                 G . . L                 M . . R              S . . Z

 

43

Quicksort
Example

44

Quicksort
Example cont.
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Quicksort: partitioning
 Many algorithms, but must be efficient
 Goal: partition array A [start ... last]  

         (start+last are indexes)
 Uses two indexes, i and j, starting from the front 

and the back of the list
 the algorithm:

- swap  pivot with last element (safekeeping)

pivot i j

5 6 4 6 3 12 19 5 6 4 63 1219

swap
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Quicksort: partitioning

 the algorithm (continued):
- move small elements left and larger elements right. 
- let i start at first element, and j start at last-1
- increment i while A[i] < pivot
- decrement j while A[j] > pivot

i j

5 6 4 63 1219

i j

5 6 4 63 1219
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Quicksort: partitioning

 the algorithm (continued):
- When i and j have stopped, and i < j: 
- swap A[i] and A[j]
- larger element goes to right side, smaller to left
- maintains: A[x] <= pivot for x<=i and A[x] >= pivot for x >= j

swap

i j

5 6 4 63 1219

i j

5 3 4 66 1219
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Quicksort: partitioning
 the algorithm (continued):

- When i and j have met or crossed 
(i >= j):

- swap A[i] and pivot 
- puts pivot in place
- A[i] >= pivot (i stopped there) 

so it stays on right side
- return i (the pivot index)

i j

5 3 4 66 1219

ij

5 3 4 66 1219

ij

5 3 4 6 6 12 19
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Quicksort: partitioning

 What if all the elements are bigger than pivot?
- i never moves, j doesn’t stop until it reaches i
- pivot swapped with A[i], at front of list
- all elements are to right of pivot

 What if all the elements are smaller than pivot?
- i never stops until it is at the pivot, j doesn’t move
- pivot swapped with itself, stays at end of list
- all elements are to left of pivot
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Quicksort: partitioning
elements equal to pivot

 What if A[i] or A[j] is equal to the pivot?
 should they stop?

- if all elements are identical:
i and j will always stop and swap at every position

- lots of unnecessary swapping, but pivot ends up in 
the middle (good).

 if they don’t stop:
- if all elements are identical:

i never stops until it is at the pivot
- No swapping, but pivot ends up at end (bad)
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Quicksort: code
version 1

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {

    if (first < last) {    //at least two elems
        int pivotPoint;

        // partition and get the pivot point (the index)
        pivotPoint = partition(values, first, last);

        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
    quickSort(values, 0, size-1);
}
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Quicksort: code
version 1

template<class ItemType>
int partition(ItemType values[], int first, int last) {

    int mid = (first + last) / 2;  //use middle value as pivot
    
    ItemType pivotValue = values[mid];
    swap(values[last], values[mid]);  //move pivot to end
    
    int i,j;
    for (i=first, j=last-1; ; ) {
        while (values[i] < pivotValue) {i++;} 
        while (j > i && pivotValue < values[j]) {j--;} 
        if (i < j) {
            swap(values[i++], values[j--]);
        }
        else
            break;
    }
    swap(values[i], values[last]);   //replace pivot
    return i;
}
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Quicksort: runtime analysis

 Choice of pivot point dramatically affects running 
time.

 Best Case
- Pivot partitions the set into 2 equally sized subsets 

at each stage of recursion: O(log N) levels
- Partitioning at each level is O(N) 

❖ each element is compared to the pivot and maybe moved 
one time

- O(N log N)
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Quicksort: runtime analysis

 Worst Case
- Pivot is always the smallest element, partitioning the 

set into one empty subset, and one of size N-1.
- Partitioning at each level is N

❖ T(N) = T(N-1) + N  (time to sort N-1 plus N for partitioning)
❖ T(N) = N + N-1 + . . . + 2 + 1     (from unwinding the above)
❖ T(N) = N(N+1)/2 

- O(N2) 

Moral of the story: it pays to pick a good pivot point
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Quicksort: runtime analysis

 Average Case
- Assume left side is equally likely to have a size of 0 

or 1 or 2 or ... or N elements
- Partitioning at each level is still N

❖ T(N) = average cost of one recursive call, over all 
subproblem sizes

❖ T(N) = (T(0) + T(1) + ... + T(N-1)) / N  (divide by N to get avg)
❖ Cost for 2 recursive calls and one partitioning:
❖ T(N) = N + 2*( (T(0) + T(1) + ... + T(N-1)) / N )
❖ Not a trivial proof . . . most of it is in the book.

- O(N log N) 
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Quicksort: Picking the pivot

 Goal: ensure the worst case doesn’t happen.
 Picking a pivot randomly is safe

- but random number generation can be expensive
 Using the first element:

- if the input is random, this is ok.
- if the input is sorted, all elements are in right half

worst case = O(N2)
 Use the median value (the middle value in order):

- perfectly divides into two even sides
- but you have to sort the list to find the median.
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Quicksort: Picking the pivot
Median of Three method

 Pivot is the median of the first, last, and middle 
value in the list.

 This is an “estimate” of the real median
- taking median of more than 3 is not worth the time
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Quicksort: Picking the pivot
Median of Three method

 Median-of-Three partitioning:
- swap the values at first, last and middle so that:

- swap pivot (median) with A[last-1]
- start with i = first+1 and j=last-2
- increment i until it encounters an element smaller 

than pivot
- decrement j until it encounters an element bigger 

than pivot
- if (i<j) swap (A[i], A[j])

A[first] = smallest,   A[middle]=median,    A[last] = biggest
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Quicksort: Picking the pivot
Median of Three method

pivot

5 6 4

6

3 12 192 13 6

5 6 4 3 12 192 6 13

A[left] = 2, A[center] = 13, A[right] = 6

Swap A[center] and A[right]

5 6 4 3 12 192 13

pivot

65 6 4 3 12192 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

Now we only need to partition A[left + 1, …, right – 2].
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Quicksort: Small Arrays

 For very small arrays, quicksort does not 
perform as well as insertion sort
➡ how small depends on many factors, such as the 

time spent making a recursive call, the compiler, etc

 Do not use quicksort recursively for small arrays
➡ Instead, use a sorting algorithm that is efficient for 

small arrays, such as insertion sort
➡ a cutoff between 5 and 20 is good.
➡ Note: median of three partitioning requires at least 3 

elements anyway
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Quicksort: code
version 2

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
    int pivotPoint;
    if (first + CUTOFF <= last) {  // more than CUTOFF elems
        pivotPoint = partition(values, first, last);
        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    } else {
        insertionSort(values, first,last);
    }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
    quickSort(values, 0, size-1);
}
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Quicksort: code
version 2template<class ItemType>

int partition(ItemType values[], int first, int last) {
    //sort first, mid, last
    int mid = (first + last) / 2;       
    if (values[mid] < values[first])  swap(values[mid], values[first]);
    if (values[last] < values[first]) swap(values[last], values[first]);
    if (values[last] < values[mid])   swap(values[last], values[mid]);
    
    ItemType pivotValue = values[mid];  // move pivot to last-1
    swap(values[last-1], values[mid]);
    
    int i,j;                            // do the partitioning
    for (i=first+1, j=last-2; ; ) {
        while (values[i] < pivotValue) {i++;}
        while (pivotValue < values[j]) {j--;}
        if (i < j)
            swap(values[i++], values[j--]);
        else
            break;
    }
    swap(values[i], values[last-1]);    // put pivot back in place
    return i;
}
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Quicksort vs MergeSort

 Both run in O(n log n)
 Compared with Quicksort, Mergesort has fewer 

comparisons but more swapping (copying)
➡ (not yet able to verify the following):
➡ In Java,  an element comparison is expensive but 

moving elements is cheap.  Therefore,  Mergesort is 
used in the standard Java library for generic sorting

➡ In C++, copying objects can be expensive while 
comparing objects often is relatively cheap.  
Therefore, quicksort is the sorting routine commonly 
used in C++ libraries


