Sorting Algorithms

Chapter 9

CS 3358
Summer I 2012
Jill Seaman

What is sorting?

- Sort: rearrange the items in a list into ascending or descending order
- numerical order
- alphabetical order
- etc.

$\begin{array}{llllllllll}55 & 112 & 78 & 14 & 20 & 179 & 42 & 67 & 190 & 7 \\ 101 & 122 & 1708\end{array}$
178142042556778101112122170179190

Sorting

- Sorting is one of the most intensively studied operations in computer science
- There are many different sorting algorithms
- The run-time analyses of each algorithm are well-known.

Sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort
- Merge sort
- Quicksort
- Heap sort (later, when we talk about heaps)

Selection Sort: Pass One

Selection sort

- There is a pass for each position (0..size-1)
- On each pass, the smallest (minimum) element in the rest of the list is exchanged (swapped) with element at the current position.
- The first part of the list (already processed) is always sorted
- Each pass increases the size of the sorted portion.

Selection Sort: End Pass One

Selection Sort: Pass Two

Selection Sort: End Pass Two

Selection Sort: End Pass Three

Selection Sort: Pass Four

Selection Sort: End Pass Four

values $[0]$	6
$[1]$	10
$[2]$	12
$[3]$	24
	36

S
O
R
T
E
D

Selection sort: code

```
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
    int minIndex = start;
    for (int i = start+1; i < size; i++)
        if (values[i] < values[minIndex])
            minIndex = i;
    return minIndex;
}
template<class ItemType>
void selectionSort (ItemType values[], int size) {
    int min
    for (int index = 0; index < (size -1); index++) {
        min = minIndex(values, SIZE, index);
        swap(values[min],values[index]);
    }
}
```


Selection sort: runtime analysis

- N is the number of elements in the list
- Outer loop (in selectionSort) executes N times
- Inner loop (in minIndex) executes N -1, then $\mathrm{N}-2$, then $\mathrm{N}-3$, ... then once.
- Total number of comparisons (in inner loop):

$$
\begin{aligned}
& \qquad \begin{aligned}
&(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1 \\
& \text { Note: } \mathrm{N}+(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1==\mathrm{N}(\mathrm{~N}+1) / 2 \\
&=\mathrm{N}^{2} / 2+\mathrm{N} / 2
\end{aligned} \\
& \text { Subtract } \mathrm{N} \text { from both sides: } \quad(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}^{2} / 2+\mathrm{N} / 2-\mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{N}^{2} / 2-\mathrm{N} / 2 \\
& \mathbf{O}\left(\mathbf{N}^{2}\right)
\end{aligned}
$$

Insertion sort

- There is a pass for each position (0..size-1)
- The front of the list remains sorted.
- On each pass, the next element is placed in its proper place among the already sorted elements.
- Like playing a card game, if you keep your hand sorted, when you draw a new card, you put it in the proper place in your hand.
- Each pass increases the size of the sorted portion.

Insertion Sort: Pass Two

Insertion Sort: Pass Three

Insertion Sort: Pass Four

values $[0]$	6
$[1]$	10
$[2]$	24
$[3]$	36
	12

Insertion Sort: Pass Five

Insertion sort: code

template<class ItemType>
void insertionSort (ItemType a[], int size) \{
for (int index = 0; index < size; index++) \{ ItemType tmp = a[index]; // next element

$$
\text { int } j=\text { index; } \quad / / \text { start from the end }
$$

// find tmp's place, AND shift bigger elements up while (j > 0 \&\& tmp < a[j-1]) \{ a[j] = a[j-1]; // shift j--;
\}
a[j] = tmp; // put tmp in its place \}

- Very similar to Selection sort
- Total number of comparisons (in inner loop):
- At most $\mathrm{j}+1$, which is 1 , then 2 , then $3 \ldots$ up to N
- So it's $N+(N-1)+(N-2)+\ldots+2+1==N(N+1) / 2$

Bubble sort

- On each pass:
- Compare first two elements. If the first is bigger, they exchange places (swap).
- Compare second and third elements. If second is bigger, exchange them.
- Repeat until last two elements of the list are compared.
- Repeat this process until a pass completes with no exchanges

Bubble sort

how does it work?

- At the end of the first pass, the largest element is moved to the end (it's bigger than all its neighbors)
- At the end of the second pass, the second largest element is moved to just before the last element.
- The back end (tail) of the list remains sorted.
- Each pass increases the size of the sorted portion.
- No exchanges implies each element is smaller than its next neighbor (so the list is sorted).

Bubble sort
 Example

-237819 $2<3<7<8$, no swap, !($8<1$), swap

- 23718 ($8<9$) no swap
- finished pass 2 , did one swap

2 largest elements in last 2 positions

- $237189 \quad 2<3<7$, no swap, !($7<1$), swap
-231789 7<8<9, no swap
- finished pass 3 , did one swap

3 largest elements in last 3 positions

Bubble sort

Example

- $231789 \quad 2<3$, ! $(3<1)$ swap, $3<7<8<9$
- 213789
- finished pass 4, did one swap
- 213789 ! $(2<1)$ swap, $2<3<7<8<9$
-123789
- finished pass 5 , did one swap
- $123789 \quad 1<2<3<7<8<9$, no swaps
- finished pass 6 , no swaps, list is sorted!

Bubble sort: code

```
template<class ItemType>
void bubbleSort (ItemType a[], int size) {
    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
        if (a[i] > a[i+1]) {
            swap(a[i],a[i+1]);
            swapped = true;
            }
        }
    } while (swapped);
}
```


Bubble sort: runtime analysis

- Each pass makes N-1 comparisons
- There will be at most N passes
- one to move the right element into each position
- So worst case it's: ${ }^{(N-1)^{*} N \quad O\left(N^{2}\right)}$
- What is the best case?
- Are there any sorting algorithms better than $\mathrm{O}\left(\mathrm{N}^{2}\right)$?

Merge sort

- Divide and conquer!
- 2 half-sized lists sorted recursively
- the algorithm:
- if list size is 0 or 1, return (base case) otherwise:
- recursively sort first half and then second half of list.
- merge the two sorted halves into one sorted list.

Merge sort

Example

- Recursively divide list in half:

$$
52461326
$$

$$
5246
$$

52	46		13	26	
5	2	4	6	1	3
	2	6			

Each of these are sorted (base case length $=1$)

Merge sort
 Example

Calls to merge, starting from the bottom:

Merge sort: code: merge

template<class ItemType>
void merge(ItemType values[], int first, int middle, int last) \{
ItemType tmp[last-first+1]; //temporary array
int i=first; //index for left
int $\mathrm{j}=$ middle +1 ; //index for right
int $\mathrm{k}=0$; //index for tmp
while (i<=middle \&\& j<=last) //merge, compare next elem from each array if (values[i] < values[j])
tmp [k++] = values[i++];
else
tmp $[k++]=$ values $[j++] ;$
while (i<=middle) tmp [k++] = values[i++];
while (j<=last)
$\quad \operatorname{tmp}[k++]=$ values $[j++] ;$
for (int i = first; i <=last; i++) //copy from tmp array back ţo values values[i] = tmp[i-first];

Merge sort: runtime analysis

- Let's start with a run-time analysis of merge
- Let's use M as the size of the final list
- The merging requires M (or fewer) comparisons +copies
- Copying from the temp array is M copies
- So merge is $\mathrm{O}(\mathrm{M})$

Merge sort: runtime analysis

- The array can be subdivided into halves $\log _{2} \mathrm{~N}$ times (there are $\log _{2} \mathrm{~N}$ levels in the graph)
- At each level in the graph,
- merge is called on each sub-list
- The total size of each sub-list added up is N
- So at each level in the graph, the total execution time is $O(N)$.
- So $\log _{2} \mathrm{~N}$ levels times $\mathrm{O}(\mathrm{N})$ at each level:

```
O(N Log N)
```


Merge sort: runtime analysis

- mergeSort has 2 recursive calls to itself.
- Why does it not have the exponential cost that the Fibonacci algorithm had?

Quicksort

- Another divide and conquer!
- 2 (hopefully) half-sized lists sorted recursively
- the algorithm:
- If list size is 0 or 1 , return. otherwise:
- partition into two lists:
* pick one element as the pivot
* put all elements less than pivot in first half
* put all elements greater than pivot in second half
- recursively sort first half and then second half of list.

Quicksort

visualization

Quicksort

Example

Quicksort

Example cont.

Quicksort: partitioning

- Many algorithms, but must be efficient
- Goal: partition array A [start ... last]
(start+last are indexes)
- Uses two indexes, i and j, starting from the front and the back of the list
- the algorithm:
- swap pivot with last element (safekeeping)

Quicksort: partitioning

- the algorithm (continued):
- When i and j have stopped, and $\mathrm{i}<\mathrm{j}$:
- swap A[i] and A[j]
- larger element goes to right side, smaller to left
- maintains: $A[x]<=$ pivot for $x<=i$ and $A[x]>=$ pivot for $x>=j$

Quicksort: partitioning

- the algorithm (continued):
- move small elements left and larger elements right.
- let i start at first element, and j start at last-1
- increment i while $A[i]$ < pivot
- decrement j while A[j] > pivot

Quicksort: partitioning

- the algorithm (continued):
- When i and j have met or crossed ($\mathrm{i}>=\mathrm{j}$):
- swap A[i] and pivot
- puts pivot in place
- A[i] >= pivot (i stopped there) so it stays on right side
- return i (the pivot index)

Quicksort: partitioning

- What if all the elements are bigger than pivot?
- i never moves, j doesn't stop until it reaches i
- pivot swapped with A[i], at front of list
- all elements are to right of pivot
- What if all the elements are smaller than pivot?
- i never stops until it is at the pivot, j doesn't move
- pivot swapped with itself, stays at end of list
- all elements are to left of pivot

Quicksort: code

version 1

```
template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
    if (first < last) { //at least two elems
        int pivotPoint;
        // partition and get the pivot point (the index)
        pivotPoint = partition(values, first, last);
        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    }
}
template<class ItemType>
void quickSort (ItemType values[], int size) \{ quickSort(values, 0, size-1);

\section*{Quicksort: partitioning}
elements equal to pivot
- What if \(A[i]\) or \(A[j]\) is equal to the pivot?
- should they stop?
- if all elements are identical:
i and j will always stop and swap at every position
- lots of unnecessary swapping, but pivot ends up in the middle (good).
- if they don't stop:
- if all elements are identical: i never stops until it is at the pivot
- No swapping, but pivot ends up at end (bad)

\section*{Quicksort: code}

\section*{version 1}
template<class ItemType>
int partition(ItemType values[], int first, int last) \{
int mid \(=(f i r s t+\) last) / 2; //use middle value as pivot
ItemType pivotValue \(=\) values[mid];
swap(values[last], values[mid]); //move pivot to end
int \(i, j ;\)
for (i=first, j=last-1; ; ) \{
while (values[i] < pivotValue) \{i++;
while (j > i \&\& pivotValue < values[j]) \{j--;\}
if (i<j) \{
swap(values[i++], values[j--]);
\}
else
\}
swap(values[i], values[last]); //replace pivot return i;
\}

\section*{Quicksort: runtime analysis}
- Choice of pivot point dramatically affects running time.
- Best Case
- Pivot partitions the set into 2 equally sized subsets at each stage of recursion: \(\mathrm{O}(\log \mathrm{N})\) levels
- Partitioning at each level is \(O(N)\)
* each element is compared to the pivot and maybe moved one time
- \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\)

\section*{- Worst Case}
- Pivot is always the smallest element, partitioning the set into one empty subset, and one of size \(\mathrm{N}-1\).
- Partitioning at each level is N
- \(\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{N}\) (time to sort \(\mathrm{N}-1\) plus N for partitioning)
* \(\mathrm{T}(\mathrm{N})=\mathrm{N}+\mathrm{N}-1+\ldots+2+1 \quad\) (from unwinding the above)
* \(T(N)=N(N+1) / 2\)
- \(\mathrm{O}\left(\mathrm{N}^{2}\right)\)

\section*{Quicksort: Picking the pivot}
- Goal: ensure the worst case doesn't happen.
- Picking a pivot randomly is safe
- but random number generation can be expensive
- Using the first element:
- if the input is random, this is ok.
- if the input is sorted, all elements are in right half worst case \(=\mathrm{O}\left(\mathrm{N}^{2}\right)\)
- Use the median value (the middle value in order):
- perfectly divides into two even sides
- but you have to sort the list to find the median?. \({ }^{6}\)

\section*{Quicksort: Picking the pivot}

Median of Three method
- Pivot is the median of the first, last, and middle value in the list.
- This is an "estimate" of the real median - taking median of more than 3 is not worth the time

\section*{Quicksort: Picking the pivot}

Median of Three method
- Median-of-Three partitioning:
- swap the values at first, last and middle so that:

A[first] = smallest, A[middle]=median, A[last] = biggest
- swap pivot (median) with A[last-1]
- start with \(\mathrm{i}=\) first+1 and \(\mathrm{j}=\) last-2
- increment i until it encounters an element smaller than pivot
- decrement \(j\) until it encounters an element bigger than pivot
- if (i<j) swap (A[i], A[j])

\section*{Quicksort: Small Arrays}
- For very small arrays, quicksort does not perform as well as insertion sort
- how small depends on many factors, such as the time spent making a recursive call, the compiler, etc
- Do not use quicksort recursively for small arrays
- Instead, use a sorting algorithm that is efficient for small arrays, such as insertion sort
- a cutoff between 5 and 20 is good.
- Note: median of three partitioning requires at least 3 elements anyway

\section*{Quicksort: code}

\section*{version 2}

\section*{template<class ItemType>}
void quickSort (ItemType values[], int first, int last) \{ int pivotPoint;
if (first + CUTOFF <= last) \{ // more than CUTOFF elems pivotPoint = partition(values, first, last); quickSort(values, first, pivotPoint - 1); quickSort(values, pivotPoint + 1, last);
\} else \{
insertionSort(values, first,last);
\}
\}
template<class ItemType>
void quickSort (ItemType values[], int size) \{ quickSort(values, 0, size-1);
\}

\section*{Quicksort vs MergeSort}
- Both run in \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\)
- Compared with Quicksort, Mergesort has fewer comparisons but more swapping (copying)
- (not yet able to verify the following):
- In Java, an element comparison is expensive but moving elements is cheap. Therefore, Mergesort is used in the standard Java library for generic sorting
- In C++, copying objects can be expensive while comparing objects often is relatively cheap. Therefore, quicksort is the sorting routine commonly used in C++ libraries

\section*{Quicksort: code}
template<class ItemType> Version 2
int partition(ItemType values[], int first, int last) \{ //sort first, mid, last
int mid \(=(f i r s t+\) last) / 2;
if (values[mid] < values[first]) swap(values[mid], values[first]); if (values[last] < values[first]) swap(values[last], values[first]); if (values[last] < values[mid]) swap(values[last], values[mid]);

ItemType pivotValue = values[mid]; // move pivot to last-1 swap(values[last-1], values[mid]);
int i,j; // do the partitioning
for (i=first+1, j=last-2; ; ) \{
while (values[i] < pivotValue) \{i++; \}
while (pivotValue < values[j]) \{j--;\}
if (i<j)
swap(values[i++], values[j--]);
else
break
\}
swap(values[i], values[last-1]); // put pivot back in place return i;
\(\}\)```

