
1

Trees and Binary Search Trees
Chapters 18 and 19

CS 3358
Summer I 2012

Jill Seaman

2

Dynamic data structures

 Linked Lists
- dynamic structure, grows and shrinks with data
- most operations are linear time (O(N)).

 Can we make a simple data structure that
can do better?

 Trees
- dynamic structure, grows and shrinks with data
- most operations are logarithmic time (O(log N)).

3

Tree:
non-recursive definition

 Tree: set of nodes and directed edges
- root: one node is distinguished as the root
- Every node (except root) has exactly exactly one

edge coming into it.
- Every node can have any number of edges going

out of it (zero or more).
 Parent: source node of directed edge
 Child: terminal node of directed edge

4

Tree:
example

 edges are directed down (source is higher)
 D is the parent of H. Q is a child of J.
 Leaf: a node with no children (like H and P)
 Sibling: nodes with same parent (like K,L,M)

5

Tree:
recursive definition

 Tree:
- is empty or
- consists of a root node and zero or more

nonempty subtrees, with an edge from the root to
each subtree.

6

Tree terms

 Path: sequence of (directed) edges
 Length of path: number of edges on the path
 Depth of a node: length of path from root to

that node.
 Height of a node: length of longest path from

node to a leaf.
- height of tree = height of root, depth of deepest leaf
- leaves have height 0
- root has depth 0

7

Example: Unix directory

8

Example: Expression Trees
more generally: syntax trees

 leaves are operands
 internal nodes are operators
 can represent entire program as a tree

9

Tree traversal
 Tree traversal: operation that converts the

values in a tree into a list
- Often the list is output

 Pre-order traversal
- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree

- Do a preorder traversal on last subtree
. . .

This is recursive. What’s the base case? 10

Preorder traversal:
Expression Tree

 print node value, process left tree, then right

 prefix notation
+ + a * b c * + * d e f g

11

Postorder traversal:
Expression Tree

 process left tree, then right, then node

 postfix notation
a b c * + d e * f + g *

12

Inorder traversal:
Expression Tree

 if each node has 0 to 2 children, you can do inorder traversal
 process left tree, print node value, then process right tree

 infix notation
a + b * c + d * e + f * g

13

Example: Unix directory traversal
Preorder Postorder

14

Binary Trees

 Binary Tree: a tree in which no node can
have more than two children.

 height: shortest: log2(n) tallest: n
n is the number of
nodes in the tree.

15

Binary Trees: implementation

 Structure with a data value, and a pointer to the
left subtree and another to the right subtree.

 Like a linked list, but two “next” pointers.
 This structure can be used to represent any

binary tree.

struct TreeNode {
 Object data; // the data
 BinaryNode *left; // left subtree
 BinaryNode *right; // right subtree
};

16

Binary Search Trees

 A special kind of binary tree
 A data structure used for efficient searching,

insertion, and deletion.
 Binary Search Tree property:

- All the values in the left subtree are smaller than
the value at X.

- All the values in the right subtree are larger than
the value at X.

 Not all binary trees are binary search trees

For every node X in the tree:

17

Binary Search Trees

A binary search tree Not a binary search tree

 Maximum depth of a node: N
 Average depth of a node: O(log2 N) 18

Binary Search Trees
The same set of values may have multiple valid BSTs

19

Binary Search Trees
An inorder traversal of a BST shows the values in
sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20
20

Binary Search Trees: operations
 insert(x)
 remove(x) (or delete)
 isEmpty() (returns bool)
 makeEmpty()

 find(x) (returns bool)
 findMin() (returns ItemType)
 findMax() (returns ItemType)

21

BST: find(x)

 if we are searching for 15 we are done.
 If we are searching for a key < 15, then we

should search in the left subtree.
 If we are searching for a key > 15, then we

should search in the right subtree.

Recursive Algorithm:

 compare 9 to 15, go left
 compare 9 to 6, go right
 compare 9 to 7 go right
 compare 9 to 13 go left
 compare 9 to 9: found

22

BST: find(x)

Example: search for 9

 Pseudocode
 Recursive

23

BST: find(x)

bool find (ItemType x, TreeNode t) {

 if (isEmpty(t))
 return false

 if (x < value(t))
 return find (x, left(t))

 if (x > value(t))
 return find (x, right(t))

 return true // x == value(t)

}

Base case

 Smallest element is found by always taking the left
branch.

 Pseudocode
 Recursive
 Tree must not be empty

24

BST: findMin()

ItemType findMin (TreeNode t) {
 assert (!isEmpty(t))

 if (isEmpty(left(t)))
 return value(t)

 return findMin (left(t))

}

25

BST: insert(x)
 Algorithm is similar to find(x)
 If x is found, do nothing (no duplicates in tree)
 If x is not found, add a new node with x in place of

the last empty subtree that was searched.

Inserting 13:

 Pseudocode
 Recursive

26

BST: insert(x)

bool insert (ItemType x, TreeNode t) {

 if (isEmpty(t))
 make t’s parent point to new TreeNode(x)

 else if (x < value(t))
 insert (x, left(t))

 else if (x > value(t))
 insert (x, right(t))

 //else x == value(t), do nothing, no duplicates

}

 Pass the node pointer by reference:
 Append x to end of a singly linked list:

27

Linked List example:

void List<T>::append (T x) {
 append(x, head);
}

void List<T>::append (T x, Node *& p) {

 if (p == NULL) {
 p = new Node();
 p->data = x;
 p->next = NULL;
 }
 else
 append (x, p->next);
}

Public function

Private recursive function

28

BST: remove(x)
 Algorithm is starts with finding(x)
 If x is not found, do nothing
 If x is not found, remove node carefully.

- Must remain a binary search tree (smallers on left, biggers
on right).

29

BST: remove(x)
 Case 1: Node is a leaf

- Can be removed without violating BST property
 Case 2: Node has one child

- Make parent pointer bypass the Node and point to child

Does not matter
if the child is the
left or right child
of deleted node

30

BST: remove(x)
 Case 3: Node has 2 children

- Replace it with the minimum value in the right subtree

- Remove minimum in right:
❖ will be a leaf (case 1), or have only a right subtree (case 2)

--cannot have left subtree, or it’s not the minimum

remove(2): replace it with the
minimum of its right subtree (3)
and delete that node.

31

BST: remove(x)
removeMin

template<class ItemType>
void BST_3358 <ItemType>::removeMin(TreeNode*& t)
{
 assert (t); //t must not be empty

 if (t->left) {
 removeMin(t->left);
 }
 else {
 TreeNode *temp = t;
 t = t->right; //it’s ok if this is null
 delete temp;
 }
}

Note: t is a pointer
passed by reference

32

BST: remove(x)
deleteItem

template<class ItemType>
void BST_3358 <ItemType>::deleteItem(TreeNode*& t, const ItemType& newItem)
{
 if (t == NULL) return; // not found

 else if (newItem < t->data) // search left
 deleteItem(t->left, newItem);
 else if (newItem > t->data) // search right
 deleteItem(t->right, newItem);

 else { // newItem == t->data: remove t
 if (t->left && t->right) { // two children
 t->data = findMin(t->right);
 removeMin(t->right);
 } else { // one or zero children: skip over t
 TreeNode *temp = t;
 if (t->left)
 t = t->left;
 else
 t = t->right; //ok if this is null
 delete temp;
 }
 }
}

Note: t is a pointer
passed by reference

33

Binary Search Trees:
runtime analyses

 Cost of each operation is proportional to the
number of nodes accessed

 depth of the node (height of the tree)
 best case: O(log N) (balanced tree)
 worst case: O(N) (tree is a list)
 average case: ??

- Theorem: on average, the depth of a binary search
tree node, assuming random insertion sequences,
is 1.38 log N

