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Dynamic data structures

 Linked Lists
- dynamic structure, grows and shrinks with data
- most operations are linear time (O(N)).

 Can we make a simple data structure that 
can do better?

 Trees
- dynamic structure, grows and shrinks with data
- most operations are logarithmic time (O(log N)).
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Tree:
non-recursive definition

 Tree: set of nodes and directed edges
- root: one node is distinguished as the root
- Every node (except root) has exactly exactly one 

edge coming into it.
- Every node can have any number of edges going 

out of it (zero or more).
 Parent: source node of directed edge
 Child: terminal node of directed edge
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Tree:
example

 edges are directed down (source is higher)
 D is the parent of H.  Q is a child of J.
 Leaf: a node with no children (like H and P)
 Sibling: nodes with same parent (like K,L,M)
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Tree:
recursive definition

 Tree:
- is empty or 
- consists of a root node and zero or more 

nonempty subtrees, with an edge from the root to 
each subtree.
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Tree terms

 Path: sequence of (directed) edges
 Length of path: number of edges on the path
 Depth of a node: length of path from root to 

that node.
 Height of a node: length of longest path from 

node to a leaf.
- height of tree = height of root, depth of deepest leaf
- leaves have height 0
- root has depth 0
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Example: Unix directory
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Example: Expression Trees
more generally: syntax trees

 leaves are operands
 internal nodes are operators
 can represent entire program as a tree
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Tree traversal
 Tree traversal: operation that converts the 

values in a tree into a list
- Often the list is output

 Pre-order traversal
- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree

- Do a preorder traversal on last subtree
. . .

This is recursive.  What’s the base case? 10

Preorder traversal:
Expression Tree

 print node value, process left tree, then right

 prefix notation
+ + a * b c * + * d e f g
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Postorder traversal:
Expression Tree

 process left tree, then right, then node

 postfix notation
a b c * + d e * f + g *
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Inorder traversal:
Expression Tree

 if each node has 0 to 2 children, you can do inorder traversal
 process left tree, print node value, then process right tree

 infix notation
a + b * c + d * e + f * g
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Example: Unix directory traversal
Preorder Postorder
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Binary Trees

 Binary Tree: a tree in which no node can 
have more than two children.

 height: shortest:  log2(n)  tallest: n
n is the number of 
nodes in the tree.
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Binary Trees: implementation

 Structure with a data value, and a pointer to the 
left subtree and another to the right subtree.

 Like a linked list, but two “next” pointers.
 This structure can be used to represent any 

binary tree.

struct TreeNode {
  Object data;       // the data
  BinaryNode *left;  // left subtree
  BinaryNode *right; // right subtree
};
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Binary Search Trees

 A special kind of binary tree
 A data structure used for efficient searching, 

insertion, and deletion.
 Binary Search Tree property:

- All the values in the left subtree are smaller than 
the value at X.

- All the values in the right subtree are larger than 
the value at X.

 Not all binary trees are binary search trees

For every node X in the tree:
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Binary Search Trees

A binary search tree Not a binary search tree

 Maximum depth of a node:  N
 Average depth of a node: O(log2 N) 18

Binary Search Trees
The same set of values may have multiple valid BSTs  
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Binary Search Trees
An inorder traversal of a BST shows the values in 
sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20
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Binary Search Trees: operations
 insert(x)
 remove(x)   (or delete)
 isEmpty()   (returns bool)
 makeEmpty()

 find(x)         (returns bool)
 findMin()     (returns ItemType)
 findMax()    (returns ItemType)
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BST: find(x)

 if we are searching for 15 we are done.
 If we are searching for a key < 15, then we 

should search in the left subtree.
 If we are searching for a key > 15, then we 

should search in the right subtree.

Recursive Algorithm:

 compare 9 to 15, go left
 compare 9 to 6, go right
 compare 9 to 7 go right
 compare 9 to 13 go left
 compare 9 to 9: found

22

BST: find(x)

Example: search for 9

 Pseudocode
 Recursive
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BST: find(x)

bool find (ItemType x, TreeNode t) {

   if (isEmpty(t))
       return false
   
   if (x < value(t))
       return find (x, left(t))
   
   if (x > value(t))
       return find (x, right(t))

   return true  // x == value(t)

}

Base case

 Smallest element is found by always taking the left 
branch.

 Pseudocode
 Recursive
 Tree must not be empty
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BST: findMin()

ItemType findMin (TreeNode t) {
   assert (!isEmpty(t))
   
   if (isEmpty(left(t)))
       return value(t)
   
   return findMin (left(t))

}
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BST: insert(x)
 Algorithm is similar to find(x)
 If x is found, do nothing (no duplicates in tree)
 If x is not found, add a new node with x in place of 

the last empty subtree that was searched.

Inserting 13:

 Pseudocode
 Recursive
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BST: insert(x)

bool insert (ItemType x, TreeNode t) {

   if (isEmpty(t))
       make t’s parent point to new TreeNode(x)
   
   else if (x < value(t))
       insert (x, left(t))
   
   else if (x > value(t))
       insert (x, right(t))

   //else x == value(t), do nothing, no duplicates

}

 Pass the node pointer by reference:
 Append x to end of a singly linked list:
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Linked List example:

void List<T>::append (T x) { 
   append(x, head);
}

void List<T>::append (T x, Node *& p) {
         
   if (p == NULL) {
       p = new Node();
       p->data = x;
       p->next = NULL;
   }   
   else 
      append (x, p->next);
}

Public function

Private recursive function
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BST: remove(x)
 Algorithm is starts with finding(x)
 If x is not found, do nothing
 If x is not found, remove node carefully.

- Must remain a binary search tree (smallers on left, biggers 
on right).
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BST: remove(x)
 Case 1: Node is a leaf

- Can be removed without violating BST property
 Case 2: Node has one child

- Make parent pointer bypass the Node and point to child

Does not matter
if the child is the
left or right child
of deleted node
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BST: remove(x)
 Case 3: Node has 2 children

- Replace it with the minimum value in the right subtree

- Remove minimum in right:
❖ will be a leaf (case 1), or have only a right subtree (case 2)

--cannot have left subtree, or it’s not the minimum

remove(2): replace it with the 
minimum of its right subtree (3) 
and delete that node.
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BST: remove(x)
removeMin

template<class ItemType>
void BST_3358 <ItemType>::removeMin(TreeNode*& t)
{
    assert (t);   //t must not be empty

    if (t->left) {
        removeMin(t->left);
    }
    else {
        TreeNode *temp = t;
        t = t->right;   //it’s ok if this is null
        delete temp;
    }
}

Note: t is a pointer
passed by reference
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BST: remove(x)
deleteItem

template<class ItemType>
void BST_3358 <ItemType>::deleteItem(TreeNode*& t, const ItemType& newItem)
{
    if (t == NULL)  return;          // not found

    else if (newItem < t->data)      // search left
        deleteItem(t->left, newItem);
    else if (newItem > t->data)      // search right
        deleteItem(t->right, newItem);
    
    else { // newItem == t->data: remove t 
        if (t->left && t->right) {   // two children
            t->data = findMin(t->right);
            removeMin(t->right);
        } else {                     // one or zero children: skip over t
            TreeNode *temp = t;
            if (t->left)
                t = t->left;
            else
                t = t->right;        //ok if this is null
            delete temp;
        }
    }
}

Note: t is a pointer
passed by reference
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Binary Search Trees: 
runtime analyses

 Cost of each operation is proportional to the 
number of nodes accessed

 depth of the node (height of the tree)
 best case: O(log N)      (balanced tree)
 worst case: O(N)          (tree is a list)
 average case: ??

- Theorem: on average, the depth of a binary search 
tree node, assuming random insertion sequences, 
is 1.38 log N


