Trees and Binary Search Trees
Chapters 18 and 19

CS 3358
Summer | 2012
Jill Seaman
\
o o
Tree:

non-recursive definition

* Tree: set of nodes and directed edges

- root: one node is distinguished as the root

- Every node (except root) has exactly exactly one
edge coming into it.

- Every node can have any number of edges going
out of it (zero or more).

 Parent: source node of directed edge
« Child: terminal node of directed edge

Dynamic data structures

* Linked Lists
- dynamic structure, grows and shrinks with data
- most operations are linear time (O(N)).

« Can we make a simple data structure that
can do better?

* Trees

- dynamic structure, grows and shrinks with data
- most operations are logarithmic time (O(log N)).

Tree:
example

Figure 4.2 A tree

 edges are directed down (source is higher)

* D is the parent of H. Q is a child of J.

+ Leaf: a node with no children (like H and P)

- Sibling: nodes with same parent (like K,L,M),

Tree:
recursive definition

* Tree:
- is empty or

- consists of a root node and zero or more
nonempty subtrees, with an edge from the root to
each subtree.

Figure 4.1 Generic tree

Tree terms

» Path: sequence of (directed) edges
* Length of path: number of edges on the path

* Depth of a node: length of path from root to
that node.

* Height of a node: length of longest path from
node to a leaf.

- height of tree = height of root, depth of deepest leaf
- leaves have height O
- root has depth 0

Example: Unix directory

Jusr*

mark* alex* bill*

/\

book* course* junk junk work* course*

chlr ch2r ch3r cop3530* cop3212*

fallo8* spr99* sum99* fall98* fall99*

I

syl.r syL.r sylr grades progl.r prog2.r prog2.r progl.r grades
Figure 4.5 unix directory

Example: Expression Trees
more generally: syntax trees

Figure 4.14 Expression tree for (a + b * ¢) + ((d * e + f) * g)

* leaves are operands
* internal nodes are operators
* can represent entire program as a tree

8

Tree traversal

* Tree traversal: operation that converts the
values in a tree into a list

- Often the list is output
* Pre-order traversal
- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree

- Do a preorder traversal on last subtree

’ This is recursive. What's the base case?‘

Preorder traversal:
Expression Tree

Figure 4.14 Expression tree for (a + b * ¢) + ((d * e + f) * g)

« print node value, process left tree, then right
’++a*bc*+*defg‘

* prefix notation

Postorder traversal:
Expression Tree

Figure 4.14 Expression tree for (a + b * ¢) + ((d * e + f) * g)

* process left tree, then right, then node

’abc*+de*f+g*‘

* postfix notation

Inorder traversal:
Expression Tree

Figure 4.14 Expression tree for (a + b * ¢) + ((d * e + f) * g)

* if each node has 0 to 2 children, you can do inorder traversal
* process left tree, print node value, then process right tree

a+tb*c+d*e+f*g

* infix notation 12

—

!

xample: Unix directory traversal

Preorder

Postorder

progl.r
grades

chl.r

ch2.r

ch3.r
book

=

W e
TRWNOVNRO AN W

ONNORAwWwHRO®RS o

N w N
DNESR-gr-Rry

—

Binary Trees: implementation

Structure with a data value, and a pointer to the
left subtree and another to the right subtree.

struct TreeNode {
Object data;
BinaryNode *left;
BinaryNode *right;
}i

// the data
// left subtree
// right subtree

Like a linked list, but two “next” pointers.

This structure can be used to represent any

binary tree.

15

—

Binary Tree: a tree in which no node can
have more than two children.

Binary Trees

n is the number of
nodes in the tree.

—

A special kind of binary tree

Binary Search Trees

A data structure used for efficient searching,
insertion, and deletion.

Binary Search Tree property:

For every node X in the tree:

All the values in the left subtree are smaller than
the value at X.

All the values in the right subtree are larger than
the value at X.

Not all binary trees are binary search trees

Binary Search Trees

A binary search tree

Binary Search Trees

An inorder traversal of a BST shows the values in
sorted order

Binary Search Trees

The same set of values may have multiple valid BSTs

3

_. .
®/ ©) / o
©

* Maximum depth of a node: N
 Average depth of a node: O(logz N)

18

— —

Binary Search Trees: operations

* insert(x)

* remove(x) (or delete)

« isEmpty() (returns bool)
* makeEmpty()

* find(x) (returns bool)
¢ findMin() (returns ltemType)
 findMax() (returns ltemType)

20

|

BST: find(x)

P root

<15 >15

Recursive Algorithm:
« if we are searching for 15 we are done.

* If we are searching for a key < 15, then we
should search in the left subtree.

* If we are searching for a key > 15, then we
should search in the right subtree.

21

BST: find(x)

Example: search for 9

- compare 9 to 15, go left (s a

« compare 9 to 6, go right GS =)
- compare 9 to 7 go right /\

- compare 9 to 13 go left ® O

* compare 9 to 9: found

BST: find(x)

* Pseudocode
* Recursive

bool find (ItemType x, TreeNode t) {

if (isEmpty(t))
return false

if (x < value(t))
return find (x, left(t))

if (x > value(t))
return find (x, right(t))

return true // x == value(t)

23

BST: findMin()

* Smallest element is found by always taking the left
branch.

* Pseudocode
* Recursive
* Tree must not be empty

ItemType findMin (TreeNode t) {
assert (!isEmpty(t))

if (isEmpty(left(t)))
return value(t)

return findMin (left(t))

} 24

BST: insert(x)

* Algorithm is similar to find(x)
* If x is found, do nothing (no duplicates in tree)

* If x is not found, add a new node with x in place of
the last empty subtree that was searched.

Inserting 13:

25

BST: insert(x)

* Pseudocode
» Recursive

bool insert (ItemType x, TreeNode t) {

if (isEmpty(t))
make t’s parent point to new TreeNode(x)

else if (x < value(t))
insert (x, left(t))

else if (x > value(t))
insert (x, right(t))

//else x == value(t), do nothing, no duplicates

26

—
Linked List example:
* Pass the node pointer by reference:
* Append x to end of a singly linked list:
void List<T>::append (T x) { - -
append(x, head);
}
void List<T>::append (T x, Node *& p) {
if (p == NULL) {
p = new Node(); Private recursive function
p->data = x;
p->next = NULL;
}
else
append (x, p->next); 27
}
—

BST: remove(x)

* Algorithm is starts with finding(x)
* If x is not found, do nothing
* If x is not found, remove node carefully.

- Must remain a binary search tree (smallers on left, biggers
on right).

28

BST: remove(x)

* Case 1: Node is a leaf
- Can be removed without violating BST property
* Case 2: Node has one child

- Make parent pointer bypass the Node and point to child

Figure 4.24 Deletion of a node (4) with one child, before and after

Does not matter
if the child is the
left or right child
of deleted node

29

BST: remove(x)
removeMin

template<class ItemType>

void BST 3358 <ItemType>::removeMin(TreeNode*& t)

passed by reference

{
assert (t); //t must not be empty Note: t is a pointer
if (t->left) {
removeMin (t->left);
}
else {
TreeNode *temp = t;
t = t->right; //it’'s ok if this is null
delete temp;
}
}

31

BST: remove(x)

* Case 3: Node has 2 children

- Replace it with the minimum value in the right subtree
- Remove minimum in right:

= will be a leaf (case 1), or have only a right subtree (case 2)
--cannot have left subtree, or it's not the minimum

remove(2): replace it with the
minimum of its right subtree (3)
and delete that node.

Figure 4.25 Deletion of a node (2) with two children, before and after 30

BST: remove(x)
deleteltem

template<class ItemType>
void BST_ 3358 <ItemType>::deleteItem(TreeNode*& t, const ItemType& newItem)

if (t == NULL) return; // not found Note: t is a pointer
passed by reference
else if (newItem < t->data) // search left
deleteItem(t->left, newItem);
else if (newItem > t->data) // search right

deleteItem(t->right, newItem);

else { // newItem == t->data: remove t
if (t->left && t->right) { // two children
t->data = findMin(t->right);
removeMin(t->right);

} else { // one or zero children: skip over t
TreeNode *temp = t;
if (t->left)
t = t->left;
else
t = t->right; //ok if this is null

delete temp;

| Binary Search Trees:

runtime analyses

 Cost of each operation is proportional to the
number of nodes accessed

+ depth of the node (height of the tree)

* best case: O(log N) (balanced tree)
» worst case: O(N) (tree is a list)

* average case: ?7?

- Theorem: on average, the depth of a binary search
tree node, assuming random insertion sequences,
is 1.38 log N

33

