
Assignment #3: Revise a Java program

Manage Inventory for an Online Store

CS 4354 Fall 2012
Instructor: Jill Seaman

Due: in class Wednesday, 10/10/2012 (upload electronic copy by 11:30am)

Problem:

Write a Java program that will allow a user to manage the inventory of a store that sells
DVDs, books, some games and puzzles, and used cell phones online (the video store
owner has expanded his inventory).

The inventory for the store will contain the following information for each product in the
inventory:
SKU (stock-keeping unit, an integer)
quantity (number of copies in inventory)
price (dollars and cents)
title (may contain spaces in it)

For movies (dvds) a upc (universal product code) is also stored
For books, an isbn (international standard book number) is also stored, along with the
author, publisher, and year of publication.
For games and puzzles, the weight (in ounces) is also stored
For cell phones, the weight (in ounces), the manufacturer, and model number are also
stored (the description of the model is stored in the title field).

You will modify your inventory program from assignment 2 (or the solution) to
accommodate the new product types.

The program should offer the user a menu with the following options (changes from the
previous version in bold):

1. Add a product to the inventory (prompt user for product category and input
values).

2. Remove a product from the inventory (by sku).
3. Display the information for a product (given the sku).
4. Display the inventory in a table, sorted by sku.
5. Process a sale.
6. Quit

For #3, display all the information available for the product item (this will differ for each
category product).

For #4, display the product category, sku, price, quantity, and title for each product
item.

The details of #5 Process a sale are given below.

The program should perform the operation selected by number and then re-display the
menu. If the operation fails (i.e. attempt to remove a product not in the inventory)
your program should display a message.

Do not change the menu numbers associated with the operations.

Your program should store the inventory in a file between executions of the program, so
that when the program is run again it will start up with the same inventory contents as
when it last terminated.

5. Process a sale

To process the sale of a certain product, ask the user to input the following:
sku
quantity sold
date
shipping cost (the actual cost of shipping all the item(s), eg postage)

Make sure there are enough items in the inventory to meet the order (check the
quantity in the inventory). If so, decrement the inventory quantity appropriately and
proceed. If not, provide a message to the user and abort the operation. Do NOT
remove the product from the inventory if the quantity is 0.

For each sale on the online venue, the venue collects a shipping credit, which it passes
on to the seller, and it charges a commission from the seller. The rules for calculating
the shipping credit and the commission vary by product type, and are shown in the
table below.

Product Type Shipping credit Commission

Movie (dvd) $2.98 12% of sale price

Book $3.99 15% of sale price

Toys $4.49 + .50/lb 15% of sale price

Electronics $4.49 + .50/lb 8% of sale price

To process the sale, your program should compute and list the following values:

Date
Sku
Sale price
Shipping credit
Commission
Shipping cost
Profit

These values should reflect the total quantity of items sold. So the Sale price is really
the price times the quantity sold. The same for the Shipping credit and Commission.
The shipping cost is input from the user and should be the total cost to ship all of the
items sold.

The Profit is calculated as follows:
Sale price + Shipping credit - Commission - Shipping cost

NOTES:

• You may use an IDE (Eclipse, netbeans, etc) or just an editor and command line
operations (javac, java) in unix or windows/dos to develop your program.

• Prices should be output in standard money format: ($7.95).

• When designing classes: try to move the common attributes and methods into
the superclass as much as possible. Use abstract classes when you can. You
might find an extra abstract class to be useful as well.

• Style guidelines: comment the following: definitions of variables, constants,
class members, sections of code, and functions (description+parameter
descriptions+what it returns, if anything). Mind your line length and
indentation. Use named constants as needed. Use static elements only as truly
necessary.

Logistics:

Please submit your java files in a single zip file (assign3_xxxxxx.zip). The xxxxx is your
TX State NetID (mine is js236).

Submit: an electronic copy only, using the Assignments tool on the TRACS website for
this class.

