
Chapter 6:
System design: decomposing the system

CS 4354
Fall 2012

Jill Seaman

1

Products of Requirements elicitation and analysis

2

Analysis !

functional!
model!

nonfunctional!
requirements!

analysis object!
model!

Requirements!
elicitation!

dynamic model!

Requirements!

Analysis Model!

Specification!

System design!

Object design!

(Use cases)

functional
model

Moving Beyond Analysis:
Activities and products of System design

3

System design

Object design

object design
model

design goals

subsystem
decomposition

Analysis

analysis object
model

dynamic model

nonfunctional
requirements

class diagram

class diagram

software architecture

Main activities of System Design

• Identify design goals: Developers identify and prioritize the
qualities of the system that they should optimize
✦Based on nonfunctional requirements

• Design the initial subsystem decomposition: Developers
decompose the system into smaller parts.
✦Based on use case and analysis models

• Refine the subsystem decomposition to address design goals:
Initial decomposition usually does not satisfy all design goals, so
developers refine it until as many as possible are satisfied.

4

1 Subsystems and Classes

• A subsystem is a sub-part of the system with a well-defined
interface that encapsulates the state and behavior of its contained
classes.

• A subsystem contains classes

• A subsystem typically corresponds to the amount of work that a
single developer or a single development team can tackle.

• The purpose to decompose a system into subsystems is to reduce
the complexity of the solution domain.

• The decomposition can be recursively applied: each sub-system
can be broken down into smaller sub-components.

5

Subsystems of the accident management system

6

Notification!

IncidentManagement!

FieldOfficerInterface!
DispatcherInterface!

ResourceManagement

MapManagement

These are
UI Systems

Manages communication
between terminals

The dotted lines
indicate dependencies

2 Services and subsystem interfaces

• A subsystem is characterized by the services it provides to other
subsystems.

• A service is a set of related operations that share a common
purpose.

• The set of operations of a subsystem that are available to other
subsystems form the subsystem interface.

7

3 Coupling and Cohesion

• Coupling is the number of dependencies between two
subsystems.
✦It measures the dependencies between two subsystems.

• If two subsystems are loosely coupled, they are relatively
independent
✦Modifications to one of the subsystems will have little impact on the other.

• If two subsystems are strongly coupled, modifications to one
subsystem is likely to have impact on the other.

• Goal: subsystems should be as loosely coupled as is reasonable.

8

Example: reducing the coupling of subsystems

9

MapManagement

IncidentManagement

Database

ResourceManagement

Alternative 1: Direct access to the Database subsystem!

High coupling:
The subsystems are
vulnerable to changes in
the interface of the
Database subsystem

Example: reducing the coupling of subsystems

10

MapManagement

IncidentManagement

Storage

ResourceManagement

Database

Alternative 2: Indirect access to the Database through a Storage subsystem!

Added a subsystem: Storage
Only one subsystem must
change if the interface to the
Database changes
(Assumes Storage interface
does not change)

Coupling and Cohesion

• Cohesion is the number of dependencies within a subsystem.
✦It measures the dependencies among classes within a subsystem.

• If a subsystem contains many objects that are related to each other
and perform similar tasks, its cohesion is high.

• If a subsystem contains a number of unrelated objects, its
cohesion is low.

• Goal: decompose system so that it leads to subsystems with high
cohesion.
✦These subsystems are more likely to be reusable

11

Example: Decision tracking system

12

Alternative

Decision

Criterion

subtasks

*
SubTask

ActionItem

DesignProblem

Task

assesses

solvableBy

resolvedBy
based-on

* * *

implementedBy

DecisionSubsystem

Low Cohesion:
Criterion, Option, and DesignProblem have No
relationships with Subtask, ActionItem, and Task

Alternative decomposition:
Decision tracking system

13

Higher cohesion in each
subsystem.
But more subsystems and
an extra interface between
Task and Decision

subtasks!

*!

assesses!

solvableBy!

resolvedBy!
based-on!

*! *! *!

implementedBy!

RationaleSubsystem!

PlanningSubsystem!

Criterion! Alternative!

Decision!

DesignProblem!

SubTask!

ActionItem! Task!

4 Layers and Partitions

• A layer is a grouping of subsystems providing related services,
possibly realized using services from another layer.
✦layers are ordered so each layer depends on lower layers and is not aware

of layers above (cannot access them)

• In a closed architecture, each layer can access only the layer
immediately below it.

• In an open architecture, a layer can also access layers at deeper
levels.

14

A layered architecture that is open
Swing user interface library on X11

15

Each layer can access
ANY of the layers below it

X11!

AWT!

Swing!

Application!

If we remove these three
arrows, then it would be a
closed architecture

If we remove these three
arrows, then it would be a
closed architecture

X11 provides low-level drawing facilities
AWT is a low level interface provided by Java
Swing provides sophisticated UI objects

Layers and Partitions

• A partition is a grouping of subsystems where each is responsible
for a different class of services.
✦each subsystem depends loosely on the others but can often operate in

isolation.

• In general a subsystem decomposition is the result of both
partitioning and layering.

• Each subsystem adds a certain processing overhead in order to
interface with other systems
✦excessive partitioning/layering can increase performance overhead and

complexity.

16

5 Architectural Styles

• The following patterns for building a software system architecture
can be used as a basis for the architecture of new systems
✦Repository

✦Model/View/Controller

✦Client/Server

✦Peer-to-peer

✦Three-tier

✦Four-tier

✦Pipe and filter

17

• Data is stored in a central shared repository

• Components interact through the repository only.

• Advantages:
✦Components are independent/separate

✦Changes to data are automatically available to other components

• Communication between components may be inefficient

Repository architectural style

18

If we remove these three
arrows, then it would be a
closed architecture

Subsystem!

Repository!

createData()!
setData()!
getData()!
searchData()!

1

2

• Used to separate the data (the model) from the way it is presented
to the user (the views)

• Model objects encapsulate the data, domain knowledge.

• View(s) objects present data to and receive actions from the user.

• Controller manages communication with the user, may change
model.

Model/View/Controller architectural style

19

If we remove these three
arrows, then it would be a
closed architecture

Controller!

Model!

subscriber!
notifier!

initiator!

*!

repository!1!

1!

*!

View!

The Controller gathers input from the user and sends
messages to the Model. The Model maintains the central data
structure. The Views display the Model and are notified (via a
subscribe/notify protocol) whenever the Model is changed.

• The server provides services to instances of other subsystems
called the clients, which are responsible for interacting with the
user

• well suited for distributed systems that manage large amounts of
data

Client/Server architectural style

20

If we remove these three
arrows, then it would be a
closed architecture

Client!

Server!

service1()!
service2()!

serviceN()!
…!

!!
requester! provider!

How is it different from the repository?
•Client is the only subsystem accessing the Server (many instances)
•Server provides services to the client (not just access to shared data)
•Separate client instances generally don’t communicate at all

• A peer-to-peer architectural style is a generalization of the client/
server architectural style in which subsystems can act both as
client or as servers, in the sense that each subsystem can request
and provide services.

Peer to Peer architectural style

21

If we remove these three
arrows, then it would be a
closed architecture

Peer!

service1()!
service2()!

serviceN()!
…!

requester!

provider!

*!

*!

• The three-tier architecture organizes subsystems into three layers:
✦The interface layer includes all boundary objects that deal with the user,

including windows, forms, web pages, and so on.

✦The application logic layer includes all control and entity objects, realizing the
processing, rule checking, and notification required by the application.

✦The storage layer realizes the storage, retrieval, and query of persistent objects.

Three Tier architectural style

22

If we remove these three
arrows, then it would be a
closed architecture

Interface

Application Logic

Storage

Connection

Form

Query

• The four-tier architectural style is a three-tier architecture in which the
Interface layer is decomposed into a Presentation Client layer and a
Presentation Server layer.
✦Presentation clients are located on user machines, may be several kinds.

Four Tier architectural style

23

If we remove these three
arrows, then it would be a
closed architecture

Presentation Server

Application Logic

Storage

Connection

Form

Query

Presentation Client WebBrowser A banking information system
can have these different clients:
•Web browser (home users)
•ATM interface
•App for bank employees

• In the pipe and filter architectural style, subsystems process data
received from a set of inputs and send results to other subsystems via
a set of outputs.

• The subsystems are called “filters,” and the associations between the
subsystems are called “pipes”.

Pipe and filter architectural style

24

If we remove these three
arrows, then it would be a
closed architecture

% ps auxwww | grep dutoit | sort | more

dutoit 19737 0.2 1.6 1908 1500 pts/6 O 15:24:36 0:00 -tcsh
dutoit 19858 0.2 0.7 816 580 pts/6 S 15:38:46 0:00 grep dutoit
dutoit 19859 0.2 0.6 812 540 pts/6 O 15:38:47 0:00 sort

ps grep sort more

Unix pipes as a metaphor

Identifying Design Goals

• Design goals: The qualities that the system should focus on.
• Source of design goals

✦They can be inferred from the nonfunctional requirements or from the
application domain.

✦Some may have to be elicited from the client.

• The design criteria (goals) can be organized into five groups:
✦Performance

✦Dependability

✦Cost

✦Maintenance

✦End user criteria.

25

Performance criteria

• Performance criteria include the speed and space requirements
imposed on the system.

26

Design criterion Definition

Response time How soon is a user request acknowledged after the
request has been issued?

Throughput How many tasks can the system accomplish in a
fixed period of time?

Memory How much space is required for the system to run?

Dependability criteria

• Dependability criteria determine how much effort should be
expended in minimizing system crashes and their consequences.

27

Design criterion Definition

Robustness Ability to survive invalid user input

Reliability Difference between specified and observed behavior

Availability Percentage of time that system can be used to
accomplish normal tasks

Fault tolerance Ability to operate under erroneous conditions

Security Ability to withstand malicious attacks

Safety Ability to avoid endangering human lives, even in
the presence of errors and failures

Cost criteria

• Cost criteria include the cost to develop the system, to deploy it,
and to administer it.

28

Design criterion Definition

Development cost Cost of developing the initial system

Deployment cost Cost of installing the system and training the
users

Upgrade cost
Cost of translating data from the previous system.
This criteria results in backward compatibility
requirements

Maintenance cost Cost required for bug fixes and enhancements to
the system

Administration cost Cost required to administer the system

Maintenance criteria

• Maintenance criteria determine how difficult it is to change the
system after deployment.

29

Design criterion Definition

Extensibility How easy is it to add functionality or new classes to the
system?

Modifiability How easy is it to change the functionality of the system?

Adaptability How easy is it to port the system to different application
domains?

Portability How easy is it to port the system to different platforms?

Readability How easy is it to understand the system from reading the
code?

Traceability of
requirements How easy is it to map the code to specific requirements?

Examples of design goal trade-offs

• Good, fast, cheap. Pick any two. (old software engineering quote)

30

Trade-off Rationale

Space vs. speed

If the software does not meet response time or throughput requirements, more
memory can be expended to speed up the software (e.g., caching, more redundancy).
If the software does not meet memory space constraints, data can be compressed at
the cost of speed.

Delivery time vs.
functionality

If development runs behind schedule, a project manager can deliver less functionality
than specified on time, or deliver the full functionality at a later time. Contract
software usually puts more emphasis on functionality, whereas off-the-shelf software
projects put more emphasis on delivery date.

Delivery time vs.
quality

If testing runs behind schedule, a project manager can deliver the software on time
with known bugs (and possibly provide a later patch to fix any serious bugs), or
deliver the software later with fewer bugs.

Delivery time vs.
staffing

If development runs behind schedule, a project manager can add resources to the
project to in crease productivity. In most cases, this option is only available early in
the project: adding resources usually decreases productivity while new personnel are
trained or brought up to date. Note that adding resources will also raise the cost of
development.

