
Chapter 7:
System design: Addressing design goals

CS 4354
Fall 2012

Jill Seaman

1

Activities and products of System design

2

System design

Object design

object design
model

design goals

subsystem
decomposition

Analysis

analysis object
model

dynamic model

nonfunctional
requirements

class diagram

class diagram

software architecture

Main activities of System Design

• Identify design goals: Developers identify and prioritize the
qualities of the system that they should optimize
✦Generally based on nonfunctional requirements

✦Chapter 6

• Design the initial subsystem decomposition: Developers
decompose the system into smaller parts.
✦Based on use case and analysis models

✦Chapter 6

• Refine the subsystem decomposition to address design goals:
Initial decomposition usually does not satisfy all design goals, so
developers refine it until as many as possible are satisfied.

3

Main activities of System Design

4

Describe boundary
conditions

Define Define
subsystems

Map subsystems
to hardware/

Manage

Select a

Define access

design goals

persistent data

control policies

global

Implement
subsystems

software platform

control flow

Chapter 6

Chapter 7

The process
is iterative

7.3 System Design Concepts
UML Deployment Diagrams

• UML deployment diagrams are used to depict the relationship
among run-time components and nodes.

• Components are self-contained entities that provide services to
other components or actors.
✦For example, a Web server is a component that provides services to Web

browsers.

• A node is a physical device or an execution environment in which
components are executed.

• A system is composed of interacting run-time components that
can be distributed among several nodes.

5

Example UML deployment diagram

6

Shows the allocation of components to different nodes.
Web browsers on PCs and Macs can access a Web server

that provides information from a database

:WebServer!

myMac:Mac! :UnixHost!

:IExplorer!

aPC:PC!

:Database!

:UnixHost!

:Safari!

<<http>>!

<<http>>!

<<jdbc>>!

7.4.1 Mapping Subsystems to
Processors and Components

• Use of multiple computers can address high-performance needs
and interconnect multiple distributed users

• Often requires an infrastructure for supporting communication
between subsystems

• This mapping has significant impact on performance and
complexity of the system so it is done early.

7

UML deployment diagram for MyTrip

8

:RoutingSubsystem! :PlanningSubsystem!

<<device>>
:OnBoardComputer!

<<webserver>>
:Apache!

<<http>>!

<<device>>
:WebHost!

• Deduce from the requirements that PlanningSubsystem is a Web-
based service run on an internet host

• RoutingSubsystem runs on the onboard computer (in the car)

Revised design model for MyTrip

9

Trip!Location!

PlanningService!

Segment!Crossing!

RouteAssistant!

Direction!

Destination!
TripProxy!

SegmentProxy!

PlanningSubsystem!

Message!

Connection!

CommunicationSubsystem!

RoutingSubsystem!

Created new subsystem to support
communicating trips across the internet

Do not need complete
object graph of Trip/

Segment/Crossing, so we
will store only Proxies for

Trip and Segment in
Routing Subsystem

• Persistent data outlive a single execution of the system.

• Data can be stored in a file or a database.
• How it is stored can affect system decomposition (i.e. repository)

7.4.2 Identifying and storing persistent data

10

PlanningSubsystem!

MapDBStoreSubsystem!
TripFileStoreSubsystem!

RoutingSubsystem!

CommunicationSubsystem!

Stores trips in a file on
a small hard drive

Stores maps and trips
in alarge database

• Usually the entity objects are persisted
• Determine: what must survive through shutdown?

• In MyTrip
✦Trips, crossing, destination, PlanningService, Segment, drivers, window

positions, user interface preferences, and state of long-running control
objects are persistent and must be stored.

✦Location and direction are not persistent. They are constantly recomputed
as the car moves.

Identifying persistent objects

11

If we remove these three
arrows, then it would be a
closed architecture

There are currently three options for storage management:

• Flat files. Cheap, simple, permanent storage, low level (Read,
Write)

• Relational database. Powerful, easy to port, supports multiple
writers and readers.

• Object-oriented database. Similar to relational database, but it
stores data as objects and associations.

Selecting a storage management strategy

12

If we remove these three
arrows, then it would be a
closed architecture

• In a multi-user system, different actors have access to different
functionality and data.

• Access control: Need to determine which objects are shared
among actors, and define how actors can access them.

• Access matrix:
✦rows represent actors

✦columns represent classes whose access is controlled

✦cells contain access rights: list of operations that can be executed on
instances of the class by the actor.

7.4.3 Providing Access Control

13

If we remove these three
arrows, then it would be a
closed architecture

Access matrix for a banking system

14

If we remove these three
arrows, then it would be a
closed architecture

Objects
Actors Corporation LocalBranch Account

Teller
postSmallDebit()
postSmallCredit()
examineBalance()

Manager examineBranchStats()

postSmallDebit()
postSmallCredit()
postLargeDebit()
postLargeCredit()
examineBalance()
examineHistory()

Analyst examineGlobalStats() examineBranchStats()

• In order to enforce access control, the identity behind the actor
must be verified

• The process of verifying the association between the identity of the
user or subsystem and the system is called authentication.
✦user names and passwords

✦access cards, etc.

• Encryption: used to prevent unauthorized access to text data:
✦uses a key to encode each character into some other character

✦used to encode stored passwords, messages passed across a network.

• Authentication and encryption methods should be determined
during System Design.

Authentication and Encryption

15

If we remove these three
arrows, then it would be a
closed architecture

• Control flow is the sequencing of actions in a system.
• Procedure driven control:

✦Operations wait for input from users

✦Procedures call other procedures and wait for results

• Event driven control:
✦Main loop waits for external event, event is dispatched to appropriate

object to handle it.

✦Commonly used in GUI systems

• Threads:
✦Concurrent operation of procedure driven control

✦Hard to debug

7.4.4 Designing Global Control Flow

16

If we remove these three
arrows, then it would be a
closed architecture

• We need to decide how the system is started, initialized, and shut
down

• We need to define how we deal with major failures such as data
corruption and network outages

• Use cases dealing with these conditions are called boundary use
cases.

7.4.6 Identifying Boundary Conditions

17

If we remove these three
arrows, then it would be a
closed architecture

• In general, we identify boundary use cases by examining each
subsystem and each persistent object:

• Configuration. For each persistent object, we examine in which
use case it is created or destroyed or archived. For objects that are
not created or destroyed in any of the common use cases (e.g.
Maps in the MyTrip system), we add a use case invoked by a
system administrator.

• Start-up and shutdown. For each component (e.g., a WebServer),
we add three use cases to start, shutdown, and configure the
component.

• Exception handling. For each type of component failure (e.g.,
network outage), we decide how the system should react (e.g.,
inform users of the failure).

Identifying Boundary Conditions

18

If we remove these three
arrows, then it would be a
closed architecture

• We need to ensure that the system design model is correct,
complete, consistent, realistic, and readable.

• The system design model is correct if the analysis model can be
mapped to the system design model.
✦Can every subsystem be traced back to a use case or a nonfunctional

requirement?

✦Can every use case be mapped to a set of subsystems?

✦Can every design goal be traced back to a nonfunctional requirement?

✦Is every nonfunctional requirement addressed in the system design
model?

✦Does each actor have an access policy?

✦Is every access policy consistent with the nonfunctional security
requirement?

7.4.7 Reviewing System Design

19

If we remove these three
arrows, then it would be a
closed architecture

• The model is complete if every requirement and every system
design issue has been addressed.
✦Have the boundary conditions been handled?

✦Was there a walkthrough of the use cases to identify missing functionality
in the system design?

✦Have all use cases been examined and assigned a control object?

✦Have all aspects of system design (i.e., hardware allocation, persistent
storage, access control, legacy code, boundary conditions) been
addressed?

✦Do all subsystems have definitions?

7.4.7 Reviewing System Design

20

If we remove these three
arrows, then it would be a
closed architecture

• The model is consistent if it does not contain any contradictions.
✦Are conflicting design goals prioritized?

✦Does any design goal violate a nonfunctional requirement?

• The model is realistic if the system can be implemented.
✦Are any new technologies or components included in the system?

✦Have performance and reliability requirements been reviewed in the
context of subsystem decomposition?

• The model is readable if developers not involved in the system
design can understand the model.
✦Are subsystem names understandable?

✦Do entities (e.g., subsystems, classes) with similar names denote similar
concepts?

7.4.7 Reviewing System Design

21

If we remove these three
arrows, then it would be a
closed architecture

