
Chapter 8:
Object design: Reusing Pattern Solutions

CS 4354
Fall 2012

Jill Seaman

1

Review: Activities and products of System design

2

System design

Object design

object design
model

design goals

subsystem
decomposition

Analysis

analysis object
model

dynamic model

nonfunctional
requirements

class diagram

class diagram

software architecture

Object Design: closing the gap
Problem

Machine

System design gap

Object design gap

Requirements gap

System

Application objects

Solution objects

Custom objects

Off-the-shelf components

Object design closes the gap between application objects identified during
requirements and off-the-shelf components selected during system design.

3

Main activities of Object Design

• Reuse: Developers identify off-the-shelf components and design
patterns to make use of existing solutions

• Interface specification: Developers precisely describe class
interface(s) to represent each subsystem interface.
✦The subsystem API

• Restructuring: Developers transform the object design model to
improve its understandability and extensibility.
✦In order to meet design goals.

• Optimization: Developers transform the object design model to
address performance criteria.
✦Such as response time or memory utilization.

4

Chapter 8

Chapter 9

Chapter 10

Chapter 10

8.3 Reuse Concepts
8.3.1 Application Objects and Solution Objects

• Application Objects, also called “domain objects”, represent
concepts of the domain that are relevant to the system.
✦Primarily entity objects, identified during analysis.

✦Independent of any system.

• Solution Objects represent components that do not have a
counterpart in the application domain, such as persistent data
stores, user interface objects, or middleware.
✦Includes boundary and control objects, identified during analysis.

✦More solution objects are identified during system design and object
design, as part of their proecesses

5

More Reuse Concepts
8.3.2 Specification Inheritance+Implementation Inheritance

• Specification Inheritance is the classification of concepts into
type hierarchies
✦Conceptually, subclass is a specialization of its superclass.

✦Conceptually, superclass is a generalization of all of its subclasses.

• Implementation Inheritance is the use of inheritance for the sole
purpose of reusing code (from the superclass).
✦the generalization/specialization relationship is usually lacking.

✦example: Set implemented by inheriting from Hashtable

6

Java Hashtable

• Description: This class implements a hashtable, which maps keys
to values.
✦Any non-null object can be used as a key or as a value.

• Hashtable methods
✦put(key,element)

Maps the specified key to the specified value in this hashtable.

✦get(key) : Object
Returns the value to which the specified key is mapped, or null if this map
contains no mapping for the key.

✦containsKey(key): boolean

✦containsValue(element):boolean

7

Set

• The interface to be implemented:
• Description: A collection that contains no duplicate element.
• Set methods

✦put(element)
Adds the specified element to this set if it is not already present

✦containsValue(element):boolean
Returns true if the element is in the set, else false.

8

Set implemented by extending Hashtable

9

Hashtable

MySet

put(element)
containsValue(element):boolean

put(key,element)
get(key):Object
containsKey(key):boolean
containsValue(element):boolean

// Set implemented using inheritance
class MySet extends Hashtable {
! MySet() { ...
! }
! void put(Object element) {
! ! if (!containsKey(element)){
! ! ! put(element, this);
! ! }
! }
! boolean containsValue(Object
! ! ! element){
! ! return containsKey(element);
! }
! /* Other methods omitted */
}

Evaluation of the inheritance version

• Good: code reuse
• Bad: Set is not a specialization of Hashtable

✦it inherits methods that don’t make sense for it:
 put(key, element), containsKey()
Potential problem: a client class uses these methods on MySet, and then
MySet is re-implemented by inheriting from some other class (like List).

✦it doesn’t work as a Hashtable
It cannot be used correctly as a special kind of Hashtable (ie passed to a
function that takes Hashtable as an argument)
Specifically containsValue() will not work as expected.

• Liskov Substitution Property: if S is a subclass of T, then objects
of type T may be replaced with objects of type S without altering
any of the desirable properties of the program. [Wikipedia]

10

Set implemented using composition/delegation

11

// Set Implemented using delegation
class MySet {
 private Hashtable table;
! MySet() {
! ! table = Hashtable();
! }
! void put(Object element) {
! ! if (!containsValue(element)){
! ! ! table.put(element,this);
! ! }
! }
! boolean containsValue(Object
! ! ! element) {
! ! return
! ! (table.containsKey(element));
! }
}

Hashtable

MySet

put(element)
containsValue(element):boolean

put(key,element)
get(key):Object
containsKey(key):boolean
containsValue(element):boolean

table 1

1

8.3.3 Delegation

• Delegation: A special form of composition
✦One class (A) contains a reference to another (B) (via member variable)

✦A implements its operations by calling methods on B.
(Methods may have different names)

✦Makes explicit the dependencies between A and B.

• Addresses problems of implementation inheritance:
✦Extensibility (allowing for change to implementation)

Internal representation of A can be changed without impacting clients of A
(methods of B are not exposed via A like they would be in inheritance)

✦Subtyping
A is not a special case of B so it cannot be accidentally used as a special
kind of B. (Does not violate LSP, because it does not apply)

12

8.3.5 Design Patterns

• In object-oriented development, Design Patterns are solutions
that developers have refined over time to solve a range of recurring
problems.

• A design pattern has four elements
✦A name that uniquely identifies the pattern from other patterns.

✦A problem description that describes the situation in which the pattern
can be used. [They usually address modifiability and extensibility design
goals.]

✦A solution stated as a set of collaborating classes and interfaces.

✦A set of consequences that describes the trade-offs and alternatives to
be considered with respect to the design goals being addressed.

13

Design Patterns

• The following terms are used to describe the class that collaborate
in a design pattern:
✦The client class access the pattern classes

✦The pattern interface is the part of the pattern that is visible to the client
class (might be an interface or abstract class).

✦The implementor class provides low level behavior of the pattern, usually
more than one.

✦The extender class specializes an implementor class to provide different
implementation of ht pattern. Usually represent future classes anticipated
by the developer.

• Tradeoff: Simple architecture vs anticipating change (extensibility)
✦ Agile methods: use refactoring to adopt patterns when need arises

14

Name: Bridge Design Pattern
Problem Description: Decouple an interface from an implementation so that
the two can vary independently.
Solution: Abstraction is visible to the Client. Abstraction maintains a reference
to its corresponding Implementor instance

8.4.1 Encapsulating Data Stores with the
Bridge Pattern

15

• Arena is the client, LeagueStore is the abstraction class
• LeagueStoreImplementor is the common interface for various

implementations of the storage.
✦Stub is for the prototype, XML is for a flat file system, JDBC is for a

database.

Example: Abstracting database vendors

16

LeagueStoreImplementor LeagueStore
imp

XML Store
Implementor

Stub Store
Implementor

JDBC Store
Implementor

Arena

• LeagueStore has a different interface from LeagueStoreImplementor
✦LeagueStore may provide higher level functions

✦LeagueStoreImplementor may provide lower level functionality

• LeagueStore can have its own subclasses

Example: Abstracting database vendors

17

LeagueStoreImplementor LeagueStore
imp

XML Store
Implementor

Stub Store
Implementor

JDBC Store
Implementor

Arena

Bridge Pattern example: Shapes

18

/** Implementor */
interface DrawingAPI {
 public void drawCircle(double x, double y, double radius);
}

/** ConcreteImplementor 1/2 */
class DrawingAPI1 implements DrawingAPI {
 public void drawCircle(double x, double y, double radius) {
 System.out.printf("API1.circle at %f:%f radius %f\n", x, y, radius);
 }
}

/** ConcreteImplementor 2/2 */
class DrawingAPI2 implements DrawingAPI {
 public void drawCircle(double x, double y, double radius) {
 System.out.printf("API2.circle at %f:%f radius %f\n", x, y, radius);
 }
}

Bridge Pattern example: Shapes

19

/** Abstraction */
interface Shape {
! public void draw();
! public void resizeByPercentage(double pct);
}

/** Refined Abstraction */
class CircleShape implements Shape {
 private double x, y, radius;
 private DrawingAPI drawingAPI;

 public CircleShape(double x, double y, double radius,
 DrawingAPI drawingAPI) {
! ! this.x = x; this.y = y; this.radius = radius;
! ! this.drawingAPI = drawingAPI;
! }
! public void draw() {
! ! drawingAPI.drawCircle(x, y, radius);
! }
! public void resizeByPercentage(double pct) {
! ! radius *= pct;
! }
}

Bridge Pattern example: Shapes

20

/** Client */
public class BridgePattern {
 public static void main(String[] args) {
 Shape[] shapes = new Shape[2];
 shapes[0] = new CircleShape(1, 2, 3, new DrawingAPI1());
 shapes[1] = new CircleShape(5, 7, 11, new DrawingAPI2());

 for (Shape shape : shapes) {
 shape.resizeByPercentage(2.5);
 shape.draw();
 }
 }
}

API1.circle at 1.000000:2.000000 radius 7.500000
API2.circle at 5.000000:7.000000 radius 27.500000

Output:

• Client is shielded from abstract and concrete implementations.
• Interfaces and implementations can be refined independently. The

implementation can be chosen (or changed) at runtime
• Improved extensibility: you can extend Abstraction and

Implementor hierarchies independently

• Question: Where does the Bridge Pattern use inheritance? Where
does it use delegation?

Bridge Pattern: consequences

21

\

Name: Adapter Design Pattern
Problem Description: Convert the interface of a legacy class into a different
interface expected by the client, so they can work together without changes.
Solution: Adapter class implements the Target interface expected by the
client. The Adapter delegates requests from the client to the Adaptee (the
legacy class) and performs any necessary conversion.

8.4.2 Encapsulating Legacy Components with the
Adapter Pattern

22

• Array.sort method expects an Array and a Comparator
✦Comparator has a compare() method

✦MyString defines greaterThan() and equals() methods

✦MyStringComparator provides a compare method in terms of the methods
in MyString

Example: Sorting Strings in a java Array

23

Adapter Pattern example: Sorting strings

24

// Existing Target interface
interface Comparator {
! int compare (Object o1, Object o2);
}
// Existing Client
class Array {
! public static void sort (Object [] a, Comparator c) {
! ! System.out.print("Sorting");
! }
}
// Existing Adaptee class (legacy)
class MyString {
! String s;
! public MyString(String x)
 { s = x; }
! public boolean equals (Object o)
 { return s.equals(o); }
! boolean greaterThan (MyString s1)
 { return s.equals(s1); }
}

Adapter Pattern example: Sorting strings

25

// New Adapter class
class MyStringComparator implements Comparator {
! public int compare(Object o1, Object o2) {
! ! int result;
! ! if (((MyString) o1).greaterThan((MyString)o2)) {
! ! ! result = 1;
! ! } else if (((MyString) o1).equals((MyString)o2)) {
! ! ! result = 0;
! ! } else
! ! ! result = -1;
! ! return result;
! }!
}
public class AdapterPattern {
! public static void main(String[] args) {
 MyString[] x = { new MyString ("B"),new MyString ("A") };
 MyStringComparator c = new MyStringComparator();
 Array.sort (x,c) ;
! }
}

• Client and Adaptee work together without any modification to
either.

• Adapter works with Adaptee and all of its sub classes
• A new Adapter needs to be written for each specialization

(subclass) of Target.

• Question: Where does the Adapter Pattern use inheritance? Where
does it use delegation?

• How is it different from the Bridge Pattern?

Adapter Pattern: consequences

26

Name: Strategy Design Pattern
Problem Description: Define a family of algorithms, encapsulate each one, and
make them interchangeable. The algorithm is decoupled from the client.
Solution: A Client accesses services provided by a Context. The Context is
configured to use one of the ConcreteStrategy objects (and maintains a reference
to it) . The AbstractStrategy class describes the interface that is common to all
the ConcreteStrategies.

8.4.3 Encapsulating Context with the
Strategy Pattern

27

• Based on location (available network connections), switch between
different types of network connections
✦LocationManager configures NetworkConnection with a concrete

NetworkInterface based on the current location

✦Application uses the NetworkConnection independently of concrete
NetworkInterfaces (NetworkConnection uses delegation).

Example: switching between network protocols

28

NetworkInterface

open()
close()
send()
receive()

NetworkConnection

send()
receive()
setNetworkInterface() LocationManager

Application

Ethernet

open()
close()
send()
receive()

WaveLAN

open()
close()
send()
receive()

UMTS

open()
close()
send()
receive()

WaveLAN = WiFi
UMTS = 3G mobile

phone network

Strategy Pattern example: Network protocols

29

// Context Object: Network Connection
public class NetworkConnection {
 private String destination;
 private NetworkInterface intf;
 private StringBuffer queue;

 public NetworkConnect(String destination, NetworkInterface intf) {
 this.destination = destination; this.intf = intf;
 this.intf.open(destination);
 }
 public void send(byte msg[]) {
 queue.concat(msg);
 if (intf.isReady()) {
 intf.send(queue);
 queue.setLength(0);
 }
 }
 public byte[] receive () {
 return intf.receive();
 }
 public void setNetworkInterface(NetworkInterface newIntf) {
 intf.close()
 newIntf.open(destination);
 intf = newIntf;
} }

Strategy Pattern example: Network protocols

30

//Abstract Strategy,
//Implemented by EthernetNetwork, WaveLanNetwork, and UMTSNetwork
interface NetworkInterface {
 void open(String destination);
 void close();
 byte[] receive();
 void send(StringBuffer queue);
 bool isReady();
}
//LocationManager: decides on which strategy to use
public class LocationManager {
 private NetworkConnection networkConn;

 // called by event handler when location has changed
 public void doLocation() {
 NetworkInterface networkIntf;
 if (isEthernetAvailable())
 networkIntf = new EthernetNetwork();
 else if (isWaveLANAvailable())
 networkIntf = new WaveLanNetwork();
 else if (isUMTSAvailable())
 networkIntf = new UMTSNetwork();
 networkConn.setNetworkInterface(networkIntf);
 }
}

• ConcreteStrategies can be substituted transparently from Context.
• Client (or Policy) decides which Strategy is best, given current

circumstances
• New algorithms can be added without modifying Context or Client

• Question: How is Strategy pattern different from the Bridge Pattern?
✦Bridge is a structural pattern, Strategy is a behavioral pattern

✦Bridge implementations are subsystems, Strategies encapsulate algorithms

✦Bridge implementation often created at system initialization, Strategies
created on the fly.

✦Bridge Abstraction sets up its own implementation, Strategy context is
usually configured by another object (Policy).

Strategy Pattern: consequences

31

Name: Abstract Factory Design Pattern
Problem Description: Shield the client from different platforms that provide
different implementations for the same set of concepts.

Solution:
A platform is represented as a set of AbstractProducts, each representing a
concept (class) that is supported by all platforms.
An AbstractFactory class declares the operations for creating each individual
product.
A specific platform is then realized by a ConcreteFactory and a set of
ConcreteProducts (one for each AbstractProduct).
 A ConcreteFactory depends only on its related ConcreteProducts.

The Client depends only on the AbstractProducts and the AbstractFactory
classes, making it easy to substitute platforms.

8.4.4 Encapsulating Platforms with the
Abstract Factory Pattern

32

The Abstract Factory Pattern (solution diagram)

33

AbstractProductA!

ProductA1! ProductA2!

AbstractProductB!

ProductB1! ProductB2!

AbstractFactory!
!

CreateProductA!
CreateProductB!

Client!

 !
!

CreateProductA!
CreateProductB!

ConcreteFactory1!

 !
!

CreateProductA!
CreateProductB!

ConcreteFactory2!

• Devices from the two manufacturers (EIB and Luxmate) are NOT
interoperable.

Example:
A Facility Management System for a House

34

LightBulb

EIBBulb LuxmateBulb

Blind

EIBBlind LuxmateBlind

IntelligentHouse HouseFactory

createBulb()
createBlind()

LuxmateFactory EIBFactory

createBulb()
createBlind()

createBulb()
createBlind()

Abstract Factory Pattern example: IntelligentHouse

35

abstract class HouseFactory {
 public static HouseFactory getFactory() {
 int man = readFromConfigFile("MANUFACTURER_TYPE");
 if (man == 0)
 return new EIBFactory();
 else
 return new LuxmateFactory();
 }
 public abstract LightBulb createBulb();
 public abstract Blind createBlind();
}

class EIBFactory extends HouseFactory {
 public LightBulb createBulb() {
 return new EIBBulb();
 }
 public Blind createBlind() {
 return new EIBBlind();
 }
}

Abstract Factory Pattern example: IntelligentHouse

36

class LuxmateFactory extends HouseFactory {
 public LightBulb createBulb() {
 return new LuxmateBulb();
 }
 public Blind createBlind() {
 return new LuxmateBlind();
 }
}
//TBD: LightBulb, EIBBulb, LuxmateBulb
//TBD: Blind, EIBBlind, LuxmateBlind

// IntelligentHouse is not aware of EIB or Luxmate
public class IntelligentHouse {
 public static void main(String[] args) {
 HouseFactory factory = HouseFactory.getFactory();
 LightBulb bulb = factory.createBulb();
 bulb.switchOn();
 }
}

• Client is shielded from concrete product classes.
• Substituting families at runtime is possible
• Adding new products is difficult since new realizations for each

factory must be created, AbstractFactory must be changed.

Abstract Factory Pattern: consequences

37

Name: Command Design Pattern
Problem Description: Encapsulate requests so that they can be executed,
undone, or queued independently of the request.
Solution: A Command abstract class declares the interface supported by all
ConcreteCommands. ConcreteCommands encapsulate a service to be applied
to a Receiver. The Client creates ConcreteCommands and binds them to specific
Receivers. The Invoker actually executes or undoes a command, which
delegates the execution to an action of the Receiver.

8.4.5 Encapsulating Control Flow with the
Command Pattern

38

Command

execute()

Receiver

action1()
action2()

Client

Invoker

ConcreteCommand1

execute()

«binds»

ConcreteCommand2

execute()

«binds»

Command Pattern example: Light switch

39

/* The Command interface */
public interface Command {
 void execute();
}

/* The Invoker class */
public class Switch {
 private List<Command> history = new ArrayList<Command>();
 public void storeAndExecute(Command cmd) {
 this.history.add(cmd); // optional
 cmd.execute();
 }
}

/* The Receiver class */
public class Light {
 public void turnOn() {
 System.out.println("The light is on");
 }
 public void turnOff() {
 System.out.println("The light is off");
 }
}

Command Pattern example: Light switch

40

/* The Command for turning on the light - ConcreteCommand #1 */
public class FlipUpCommand implements Command {
 private Light theLight;
 public FlipUpCommand(Light light) {
 this.theLight = light;
 }
 public void execute(){
 theLight.turnOn();
 }
}

/* The Command for turning off the light - ConcreteCommand #2 */
public class FlipDownCommand implements Command {
 private Light theLight;
 public FlipDownCommand(Light light) {
 this.theLight = light;
 }
 public void execute() {
 theLight.turnOff();
 }
}

Command Pattern example: Light switch

41

/* The test class or client */
public class PressSwitch {
 public static void main(String[] args){
 Light lamp = new Light();
 Command switchUp = new FlipUpCommand(lamp);
 Command switchDown = new FlipDownCommand(lamp);
 Switch s = new Switch();
 try {
 if (args[0].equalsIgnoreCase("ON")) {
 s.storeAndExecute(switchUp);
 }
 else if (args[0].equalsIgnoreCase("OFF")) {
 s.storeAndExecute(switchDown);
 }
 else
 System.out.println("Argument \"ON\" or \"OFF\" is required.");
 } catch (Exception e) {
 System.out.println("Arguments required.");
 }
 }
}

• The object of the command (Receiver) and the algorithm of the
command (ConcreteCommand) are decoupled.

• Invoker is shielded from specific commands.
• ConcreteCommands are objects. They can be created and stored.
• New ConcreteCommands can be added without changing existing

code.

• Question: Where does the Adapter Pattern use inheritance? Where
does it use delegation?

Command Pattern: consequences

42

Name: Composite Design Pattern
Problem Description: Represent a hierarchy of variable width and depth so that
leaves and composites can be treated uniformly through a common interface.
Solution: The Component interface specifies the services that are shared among
Leaf and Composite (operation()). A Composite has an aggregation association
with Components and implements each service by iterating over each contained
Component. The Leaf services do most of the actual work.

8.4.6 Encapsulating Hierarchies with the
Composite Pattern

43

• Anatomy of a preference dialog. Aggregates, called Panels, are
used for grouping user interface objects that need to be resized and
moved together.

Example: A hierarchy of user interface objects

44

Top panel

Main panel

Button panel

• An object diagram (it contains instances, not classes) of the
previous example:

Example: A hierarchy of user interface objects

45

top:Panel

prefs:Window

ok:Button

main:Panel buttons:Panel

title:Label

c2:Checkbox

c3:Checkbox

c4:Checkbox

cancel:Button

c1:Checkbox

• A class diagram, for user interface widgets

Example: A hierarchy of user interface objects

46

Component
*

Checkbox Button Composite Label

Panel Window

Applet

move()
resize()

move()
resize()

Composite Pattern example: File system

47

//Component Node, common interface
interface AbstractFile {
! public void ls();
}

// File implements the common interface, a Leaf
class File implements AbstractFile {
! private String m_name;
! public File(String name) {
! ! m_name = name;
! }
! public void ls() {
! ! System.out.println(CompositeDemo.g_indent + m_name);
! }
}

Composite Pattern example: File system

48

// Directory implements the common interface, a composite
class Directory implements AbstractFile {
! private String m_name;
! private ArrayList<AbstractFile> m_files = new ArrayList<AbstractFile>();
! public Directory(String name) {
! ! m_name = name;
! }
! public void add(AbstractFile obj) {
! ! m_files.add(obj);
! }
! public void ls() {
! ! System.out.println(CompositeDemo.g_indent + m_name);
! ! CompositeDemo.g_indent.append(" ");
! ! for (int i = 0; i < m_files.size(); ++i) {
! ! ! AbstractFile obj = m_files.get(i);
! ! ! obj.ls();
! ! }
! ! CompositeDemo.g_indent.setLength(CompositeDemo.g_indent.length() - 3);
! }
}

Composite Pattern example: File system

49

public class CompositeDemo {
! public static StringBuffer g_indent = new StringBuffer();

! public static void main(String[] args) {
! ! Directory one = new Directory("dir111"),
 two = new Directory("dir222"),
 thr = new Directory("dir333");
! ! File a = new File("a"), b = new File("b"),
 c = new File("c"), d = new File("d"), e = new File("e");
! ! one.add(a);
! ! one.add(two);
! ! one.add(b);
! ! two.add(c);
! ! two.add(d);
! ! two.add(thr);
! ! thr.add(e);
! ! one.ls();
! }
}

dir111
 a
 dir222
 c
 d
 dir333
 e
 b

Output:

• Client uses the same code for dealing with Leaves or Composites
• Leaf-specific behavior can be modified without changing the

hierarchy
• New classes of leaves (and composites) can be added without

changing the hierarchy

• Could make your design too general. Sometimes you want
composites to have only certain components. May have to add
your own run-time checks.

Composite Pattern: consequences

50

Name: Observer Design Pattern
Problem Description: Maintain consistency across the states of one Subject and
many Observers.

A.7 Decoupling Entities from Views with the
Observer Pattern

51

Solution: The Subject maintains
some state. One or more
Observers use the state
maintained by the Subject.
Observers invoke the subscribe()
method to register with a Subject.
Each ConcreteObserver defines
an update() method to
synchronize its state with the
Subject. Whenever the state of
the Subject changes, it invokes its
notify method, which iteratively
invokes each Subscriber.update()
method.

• We could implement the Observer pattern “from scratch” in Java.
But Java provides the Observable/Observer classes as built-in
support for the Observer pattern.

• The java.util.Observer interface is the Observer interface. It must be
implemented by any observer class. It has one method.
- void update (Observable o, Object arg)

This method is called whenever the observed object is changed.
Observable o is the object it is observing.
Object arg, if not null, is the changed object.

Observer Pattern: Java support

52

• The java.util.Observable class is the base Subject class. Any class
that wants to be observed extends this class.
- public synchronized void addObserver(Observer o)

Adds an observer to the set of observers of this object

- protected synchronized void setChanged()
Indicates that this object has changed

- public void notifyObservers(Object arg)
- public void notifyObservers()

If this Observable object has changed, then notify all of its
observers. Each observer has its update() method called with this
Observable object and the arg argument. The arg argument can be
used to indicate which attribute of this Observable object has
changed.

Observer Pattern: Java support

53

Observer Pattern example:

54

import java.util.Observable;

/* A subject to observe! */
public class ConcreteSubject extends Observable {
 private String name;
 private float price;
 public ConcreteSubject(String name, float price) {
 this.name = name;
 this.price = price;
 System.out.println("ConcreteSubject created: " + name + " at " + price);
 }
 public String getName() {return name;}
 public float getPrice() {return price;}
 public void setName(String name) {
 this.name = name;
 setChanged();
 notifyObservers(name);
 }
 public void setPrice(float price) {
 this.price = price;
 setChanged();
 notifyObservers(new Float(price));
 }
}

Observer Pattern example:

55

import java.util.Observable;
import java.util.Observer;

//An observer of name changes.
public class NameObserver implements Observer {
! private String name;

! public NameObserver() {
! ! name = null;
! ! System.out.println("NameObserver created: Name is " + name);
! }

! public void update(Observable obj, Object arg) {
! ! if (arg instanceof String) {
! ! ! name = (String) arg;
! ! ! System.out.println("NameObserver: Name changed to " + name);
! ! } else {
! ! ! System.out.println("NameObserver: Some other change to subject!");
! ! }
! }
}

Observer Pattern example:

56

import java.util.Observable;
import java.util.Observer;

//An observer of price changes.
public class PriceObserver implements Observer {
! private float price;

! public PriceObserver() {
! ! price = 0;
! ! System.out.println("PriceObserver created: Price is " + price);
! }

! public void update(Observable obj, Object arg) {
! ! if (arg instanceof Float) {
! ! ! price = ((Float) arg).floatValue();
! ! ! System.out.println("PriceObserver: Price changed to " + price);
! ! } else {
! ! ! System.out.println("PriceObserver: Some other change to subject!");
! ! }
! }
}

Observer Pattern example:

57

//Test program for ConcreteSubject, NameObserver and PriceObserver
public class TestObservers {
 public static void main(String args[]) {
 ! // Create the Subject and Observers.
! ConcreteSubject s = new ConcreteSubject("Corn Pops", 1.29f);
! NameObserver nameObs = new NameObserver();
! PriceObserver priceObs = new PriceObserver();
! // Add those Observers!
! s.addObserver(nameObs);
! s.addObserver(priceObs);
! // Make changes to the Subject.
! s.setName("Frosted Flakes");
! s.setPrice(4.57f);
! s.setPrice(9.22f);
! s.setName("Sugar Crispies");
 }
}

ConcreteSubject created: Corn Pops at 1.29
NameObserver created: Name is null
PriceObserver created: Price is 0.0
PriceObserver: Some other change to subject!
NameObserver: Name changed to Frosted Flakes
PriceObserver: Price changed to 4.57
NameObserver: Some other change to subject!
PriceObserver: Price changed to 9.22
NameObserver: Some other change to subject!
PriceObserver: Some other change to subject!
NameObserver: Name changed to Sugar Crispies

• Decouples a Subject from the Observers. Subject knows only that
it contains a list of Observers, each with an update() method. They
can belong to different layers.

• Observers can change or be added without changing Subject.
• Observers can ignore notifications (decision is not made by

Subject).
• Can result in many spurious broadcasts (and calls to getState())

when the state of a Subject changes.

Observer Pattern: consequences

58

Name: Proxy Design Pattern
Problem Description: Improve the performance or security of a system by
delaying expensive computations, using memory only when needed, or checking
access before loading an object into memory.
Solution: The Proxy class acts on behalf of a RealSubject class. Both classes
implement the same Subject interface. They Proxy stores a subset of the
attributes of the RealSubject. The Proxy handles certain requests completely,
whereas others are delegated to the RealSubject.

A.8 Encapsulating Expensive Objects with the
Proxy Pattern

59

• ImageProxy contains the filename of the image. Its reference to the
Image can be null until the draw method is called. Then it creates
the Image object using the filename.

Example: Delayed loading of image content

60

Proxy Pattern example:

61

public interface Graphic {

 // a method used to draw the image
 public void draw();
}

public class Image implements Graphic {

 private byte[] data;

 public Image(String filename) {
 // Load the image
 data = loadImage(filename);
 }

 public void draw() {
 // Draw the image
 drawToScreen(data);
 }
}

Proxy Pattern example:

62

public class ImageProxy implements Graphic {

 // Variables to hold the concrete image
 private String filename;
 private Image content;

 public ImageProxy(String filename) {
 this.filename = filename;
 content = null;
 }

 // on a draw-request, load the concrete image
 // if we haven't done it until yet.
 public void draw() {
 if (content == null) {
 content = new Image(filename);
 }
 // Forward to the Concrete image.
 content.draw();
 }
}

• Adds a level of indirection between Client and RealSubject
‣ Can hide the fact that an object is not stored locally
‣ Can create a complete object on demand
‣ Can make sure caller has access permissions before performing

request.

• Note the use of delegation

Proxy Pattern: consequences

63

Name: Facade Design Pattern
Problem Description: Reduce coupling between a set of related classes and the
rest of the system. Provide a simple interface to a complex subsystem.

A.6 Encapsulating Subsystems with the
Facade Pattern

64

Solution: A single
Facade class
implements a high-level
interface for a
subsystem by invoking
the methods of lower-
level classes. A Facade
is opaque in the sense
that a caller does not
access the lower-level
classes directly. The use
of Facade patterns
recursively yields a
layered system.

• Compiler class is a facade hiding the Scanner, Parser,
ProgramNodeBuilder and CodeGenerator.

Example: Compiler subsystem

65

• Shields a client from the low-level classes of a subsystem.
• Simplifies the use of a subsystem by providing higher-level

methods.
• Promotes “looser” coupling between subsystems.

• Note the use of delegation to reduce coupling.

Facade Pattern: consequences

66

• Use key phrases from design goals to help choose pattern

8.4.7 Heuristics for Selecting Design Patterns

67

Phrase Design Pattern

“Manufacturer independence”
“Platform independence”

Abstract
Factory

“Must comply with existing interface”
“Must reuse existing legacy component” Adapter

“Must support future protocols” Bridge
“All commands should be undoable”
“All transactions should be logged” Command

“Must support aggregate structures”
“Must allow for hierarchies of variable depth and width” Composite

“Policy and mechanisms should be decoupled”
“Must allow different algorithms to be interchanged at
runtime”

Strategy

