
Introduction to Object-Oriented Design and
Implementation

CS 4354
Fall 2012

Jill Seaman

1

Two textbooks

• Object-Oriented Software Engineering: Using UML, Patterns, and
Java, by Bernd Bruegge and Allen H. Dutoit, Prentice Hall, 3rd
edition. ISBN: 0136061257
✦Main textbook for class (will use exercises from this book)

✦Heavy on Software engineering

• Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, by Craig Larman,
Prentice Hall, 3rd edition. ISBN: 0131489062
✦More emphasis on object-oriented analysis and design

✦Embedded in the UP (Unified Process) software process model

2

Object-oriented analysis

• Analysis: an investigation of the problem (rather than developing a
solution)

• Requirements analysis: investigation of requirements

• Object-oriented analysis: emphasizes finding and describing the
objects (or concepts) in the problem domain.
✦For example, concepts in a Library Information System include Book,

Library, and Patron.

3

Object-oriented design

• Design: a conceptual solution that fulfills the requirements (rather
than the implementation)
✦Ultimately, designs can be implemented.

• Object-oriented design: define software objects and how they
collaborate to fulfill the requirements.
✦For example, in the Library Information System, a Book software object

may have a title attribute and a getChapter method.

✦Expressed using models (UML)

4

Object-oriented programming (or implementation)

• Designs are implemented in an object-oriented language such as
Java or C++.
✦A Java class for the Book object is written/implemented.

✦Expressed in a program (source code)

5

Analysis + Design + Implementation

Book

title
print()

public class Book {
public void print();
private String title;

}

Book
(concept)

Analysis
investigation

of the problem

Design
logical solution

Implementation
code

Domain concept Visualization of
domain concepts,
represented using
models

Representation in an
object-oriented
programming language.

6

The UML

• The Unified Modeling Language (UML) is a language for specifying,
visualizing, constructing, and documenting the artifacts of software
systems, as well as for business modeling and other non-software
systems

• The standard diagramming notation for object-oriented modeling.
✦Use case diagrams

✦Sequence diagrams

✦Class diagrams

✦State (machine) diagrams

✦Activity diagrams

7

Review of software engineering

• Software Engineering is a collection of techniques, methodologies
and tools that help with the production of
✦a high quality software system

✦with a given budget

✦before a given deadline

• while change occurs.

• Software engineering is an engineering discipline that is concerned
with all aspects of software production

8

Four fundamental activities in a software process

• Software specification, where customers (and engineers) define the
software that is to be produced and the constraints on its
operation.

• Software development, where the software is designed and
programmed (implemented).

• Software validation, where the software is checked to ensure that it
is what the customer requires.

• Software evolution, where the software is modified to reflect
changing customer and market requirements.

9

Recall: activities may be interleaved in cycles (iterative development)

Object-oriented software development

• Requirements elicitation

• Analysis

• System design

• Object design

• Implementation

• Testing

10

Ticket distributor system (case study)

• TicketDistributor is a machine that distributes tickets for trains.
Travelers have the option of selecting a ticket for a single trip or for
multiple trips, or selecting a time card for a day or a week. The
TicketDistributor computes the price of the requested ticket based
on the area in which the trip will take place and whether the traveler
is a child or an adult. The TicketDistributor must be able to handle
several exceptions, such as travelers who do not complete the
transaction, travelers who attempt to pay with large bills, and
resource outages, such as running out of tickets, change, or power.

11

Requirements elicitation

• During requirements elicitation, the client and developers define
the purpose of the system.

• The result of this activity is a description of the system in terms of
actors and use cases.

• Actors represent the external entities that interact with the system.
✦Examples: end users, other computers, environment

• Use cases are general sequences of events that describe all the
possible actions between an actor and the system for a given piece
of functionality.

12

A use case: PurchaseOneWayTicket

13

Use case name PurchaseOneWayTicket
Participating actor Initiated by Traveler

Flow of events 1. The Traveler selects the zone in which the destination station
is located.

2. The TicketDistributor displays the price of the ticket.
3. The Traveler inserts an amount of money that is at least as

much as the price of the ticket.
4. The TicketDistributor issues the specified ticket to the

Traveler and returns any change.

Entry condition The Traveler stands in front of the TicketDistributor, which may
be located at the station of origin or at another station.

Exit condition The Traveler holds a valid ticket and any excess change.

Quality requirements If the transaction is not completed after one minute of inactivity,
the TicketDistributor returns all inserted change.

Analysis

• During analysis, developers aim to produce a model of the system
that is correct, complete, consistent, and unambiguous.

• The result of analysis is a system model annotated with attributes,
operations, and associations.

• The system model can be described in terms of its structure and its
dynamic interoperation.

14

A dynamic model for the TicketDistributor

15

selectZone() getPrice()

insertChange() updateBalance()

insertChange()

:Traveler

amountDue

amountDue

acknowledgement

updateBalance()

«create»
printedTicket

:TicketDistributor :Balance

:Ticket

:Zone

An object model for the TicketDistributor

16

results into valid for

amount paid

Coin

Bill

Zone

Balance

TicketTransaction

System Design

• During system design, developers define the design goals of the
project and decompose the system into smaller subsystems that
can be realized by individual teams.

• The result of system design is a clear description of each of these
strategies, a subsystem decomposition, and a deployment diagram
representing the hardware/software mapping of the system.

17

A subsystem decomposition for the
TicketDistributor

18

Traveler Interface Updater

Local Tariff Central Tariff

Object Design

• During object design, developers define solution domain objects
to bridge the gap between the analysis model and the hardware/
software platform defined during system design.

• The result of the object design activity is a detailed object model
annotated with constraints and precise descriptions for each
element.

19

Implementation

• During implementation, developers translate the solution domain
model into source code.

• The result is the source code.

20

Testing

• During testing, developers find differences between the system
and its models by executing the system (or parts of it) with sample
input data sets.

• The planning of test phases occurs in parallel to the other
development activities:
✦System tests – requirements elicitation and analysis
✦ Integration tests – system design
✦Unit tests – object design

• The execution of test phases generally occurs in the opposite
order, during or after implementation.

21

• Activities and their products (part I)

Object-oriented software development

Requirements
elicitation (Ch.4)

Analysis (Ch.5)

System design

functional modelnonfunctional requirements

analysis object model

dynamic model

class diagram

use case diagram

(Ch.6 & 7)

statechart diagram

sequence diagram

problem statement

• Activities and their products (part II)

Object-oriented software development

System design (Ch. 6 & 7)

Object design (Ch. 8 & 9)

Implementation
(Ch. 10)

Object design model

design goals

subsystem decomposition

source code

Test (Ch. 11)

deliverable system

class diagram

Where does OO Design and Implementation fit in
software engineering processes?

• Software specification:
✦Requirements elicitation

• Software development:
✦Analysis
✦System design
✦Object design
✦ Implementation

• Software validation
✦Testing

24

