
Introduction to the Java programming language

CS 4354
Fall 2012

Jill Seaman

1

A simple java program

2

//This application program prints Welcome
//to Java!

public class Welcome {!
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Welcome.java

Compilation

• To compile the program enter at the prompt (Unix or Dos):

✦javac is the java compiler

✦If successful, this command creates the file Welcome.class in the same
directory

✦Welcome.class contains platform-independent bytecode

✦bytecode is interpreted (executed) by a Java Virtual Machine (JVM), and
will run on a JVM installed on any platform

✦The program does NOT need to be recompiled to run on another platform.

3

javac Welcome.java

Execution

• To run the program enter at the prompt (Unix or Dos):

✦This runs the java bytecode on a Java Virtual Machine.

✦The java tool launches a Java application. It does this by starting a Java
runtime environment, loading a specified class, and invoking that class's
main method.

✦The method must be declared public and static, it must not return any
value, and it must accept a String array as a parameter.

4

workspace jill$ java Welcome
Welcome to Java!
workspace jill$

Editions of Java

• Different editions of java target different application environments
✦Java Card for smartcards.

✦Java Platform, Micro Edition (Java ME) — targeting environments with
limited resources.

✦Java Platform, Standard Edition (Java SE) — targeting workstation
environments.

✦Java Platform, Enterprise Edition (Java EE) — targeting large distributed
enterprise or Internet environments.

• Each edition offers slightly different libraries (APIs) suited for the
given environment.

• API: Application Programming Interface: the specification of the
interface.

5

Packages of Java

• Two distributions:
✦Java Runtime Environment (JRE) contains part of the Java SE platform

required to run Java programs (JVM)

✦Java Development Kit (JDK) is for developers and includes development
tools such as the Java compiler, Javadoc, Jar, and a debugger.

6

Releases of Java

• Different releases of Java
✦JDK 1.0 (1996) Codename: Oak

✦JDK 1.1 (1997)

✦J2SE 1.2 (1998)

✦J2SE 1.3 (2000)

✦J2SE 1.4 (2002)

✦J2SE 5.0 (2004) (1.5)

✦Java SE 6 (2006) (1.6) (I have this one)

✦Java SE 7 (2011)

7

Principles

• There were five primary goals in the creation of the Java language:
✦It should be "simple, object-oriented and familiar"

✦It should be "robust and secure"

✦It should be "architecture-neutral and portable"

✦It should execute with "high performance"

✦It should be "interpreted, threaded, and dynamic"

8

Features

• Interesting features of Java
✦Object-oriented: everything is an object

✦Inheritance

✦Polymorphism: can use a subclass object in place of the superclass

✦Garbage collection (dynamic memory allocation)

✦Exception handling: built-in error handling

✦Concurrency: built-in multi-threading

✦Persistence: support for saving objects’ state between executions

✦Platform independence: supports web programming

9

Free Java textbook available online

• "Thinking in Java" by Bruce Eckel, 4th edition, 2006, ISBN
0131872486, Pearson Education

• The third edition is a free electronic book:

10

http://www.mindview.net/Books/TIJ/

Characteristics of
Pure object-oriented programming

• Everything is an object.
✦attributes + operations

• A program is a bunch of objects telling each other what to do by
sending messages
✦a message as a request to call a method that belongs to a particular object

• Each object has its own memory made up of other objects.
✦this is how to represent complex systems

• Every object has a type.
✦its type is a class, the class specifies the methods of the object

• All objects of a particular type can receive the same messages.
✦Even the instances of the subclasses

11

All objects in Java are really references

• Everything is treated as an object, using a single consistent syntax.
• However, the identifier you manipulate is actually a “reference” to

an object

• Safer to initialize a reference when you create it:

• Usually you use “new” to create new objects:

• Note: references are on stack, objects are in heap.
12

String s; //this is just a ref, a pointer

String s = “asdf”;

String s = new String(“asdf”);

• These are NOT references, not objects
• They are stored on the stack
• Size is not machine-dependent, always the same

Special case: primitive types

13

Wrapper:
object that
contains the primitive

Arrays in Java

• An array is ALWAYS initialized
✦cannot access uninitialized elements by mistake

• Arrays have bounds checking
✦unable to access memory outside its block (using the array): runtime error

• This is to enforce safety (though it requires overhead)
• Arrays are objects, contain primitives or references to objects

✦member length returns size of array

✦can access elements using [x]

14

Weeble[] c = new Weeble[4];
for(int i = 0; i < c.length; i++)
 if(c[i] == null) // Can test for null reference
 c[i] = new Weeble();

Classes in Java, fields

• A Class defines a type with fields (data) and methods (operations)
• Fields can be objects or primitives

• Can create an object of this class:

• Fields are accessible using dot operator

15

class ClassA {
 int i;
 Weeble w;
}

ClassA a = new ClassA();

a.i = 11;
a.w = new Weeble();

Default values for fields of primitive type

• All fields of primitive types are initialized to the following default
values.

• These apply to fields, not to local variables.

16

Classes in Java, methods

• Methods in Java determine the messages an object can receive.
• They are functions that the object can execute on itself
• Syntax is very similar to C++

• Methods are accessible using dot operator

17

class ClassA {
 int i;
 Weeble w;
 int mult (int j) {
 return i*j;
 }
}

ClassA a = new ClassA();
a.i = 10;
int x = a.mult(4);

Accessing classes from libraries

• In Java libraries are called packages
• Packages have dotted path names (like internet domains)
• To use a class from a package, import the qualified class name:

• Or import the entire package:

18

import java.util.ArrayList;

import java.util.*;

static keyword

• When a field or method is declared static, it means that data or
method is not tied to any particular object instance of that class

• Instances of the class share the same static fields
• Static methods may not access non-static fields

• Static fields and methods may be accessed without instantiating
any objects, or from an existing object.

19

StaticFun.i = 100;
StaticFun sf = new StaticFun();
sf.incr();

class StaticFun {
 static i = 11;
 static void incr () { i++; }
}

A Java program

• Standalone program: one class must have same name as file. that
class must have a main method with signature as above.

• args are for command line arguments.
• public means method is available outside the file
• comments: /* ... */ or //...to end of line

20

// HelloDate.java
import java.util.*;

public class HelloDate {
 public static void main(String[] args) {
 System.out.println("Hello, it's: ");
 System.out.println(new Date());
 }
}

Java library documentation

• Online documentation for Java 1.6 API

• java.lang is always implicitly loaded
✦System class, contains out field (a static PrintStream)

✦PrintStream has println methods

• Look for Date
✦java.util.Date

✦shows constructor and other methods in documentation

21

http://docs.oracle.com/javase/6/docs/api/

Operators in Java

• Mathematical operators, same as C++

✦integer division truncates, like C++

• Relational operators yield boolean result (not int)

✦== over objects tests the value of the reference (the pointers)

• Logical operators

• String + is concatenation:
this yields a new string object:

22

< > <= >= == !=

+ - * / %
++ --
+= -= *= /= %=

&& || !

“abc” + “def”

“abcdef”

Assignment in Java

• Assignment in Java is like in C++
✦For primitive types, values are copied

✦For objects, the reference is copied so both variables refer to the same
object.

✦changes to a will also affect b

• Objects are passed by reference by default

23

Weeble b = new Weeble();
Weeble a;
a = b; // a and b refer to same Weeble object

int a;
a = 10;

Control flow in Java (same as C++)

• if-else

• while, do-while, and for

• break and continue (also with labels)
• switch statement like C++

24

if(Boolean-expression)
 statement
else
 statement

if(Boolean-expression)
 statement

while(Boolean-expression)
 statement

do
 statement
while(Boolean-expression);

for(initialization; Boolean-expression; step)
 statement

