
Testing:JUnit

CS 4354
Fall 2012

Jill Seaman

1

Review: Object-Oriented Development, part 2

2

System design (Ch. 6 & 7)

Object design (Ch. 8 & 9)

Implementation
(Ch. 10)

object design model

design goals

subsystem decomposition

source code

Test (Ch. 11)
deliverable system

class diagram

analysis object model

An overview of Testing

• Testing is the process of finding differences between the expected
behavior specified by system models and the observed behavior of
the implemented system.

• Unit testing: individual program units or object classes are tested.
--should focus on testing the functionality of objects.

• Component testing: several individual units are integrated to
create composite components.
--should focus on testing component/subsystem interfaces.

• System testing: all of the components in a system are integrated
and the system is tested as a whole.
--should focus on testing component interactions.

• Performance testing finds differences between nonfunctional
requirements and actual system performance.

3

Goal of Testing

• Goal of testing is to identify faults and then to fix them.
✦An attempt to show that the system is inconsistent with the system

models.

4

Unit testing

• Unit testing is the process of testing individual components in
isolation.

• Goal: complete test coverage of a class:
✦Testing all operations associated with an object

✦Setting and interrogating all object attributes

✦Exercising the object in all possible states

5

Automation

• Automation of executing test cases has many benefits
✦Fewer errors than manual testing

✦Ensure that changing the source code does not introduce an error that would
be exposed by a test case.

✦The code is tested more frequently and errors can be detected earlier

• Disadvantage to automation of testing
✦ It takes a while to set up the testing infrastructure.

6

JUnit

• A Java framework for writing and running unit tests
• Written by Kent Beck and Erich Gamma (Design Pattern authors)
• Written with “test first” and pattern-based development in mind

✦Tests written before (or after) code

✦Allows for regression testing

✦Facilitates refactoring

• JUnit is Open Source
✦www.junit.org

✦JUnit Version 4, released Mar 2006

7

JUnit: test cases

• JUnit 4.x uses annotations to identify methods that are test methods.
• To write a test with JUnit:

✦Annotate a method with @Test

✦Use a method provided by JUnit to check the expected result of the code
execution versus the actual result

➡assertEquals(a,b)

➡assertTrue(b)

➡assertFalse(b)

➡assertNotNull(x)

8

JUnit: running test cases

• To run your tests you can use
✦Eclipse or

✦NetBeans or

✦org.junit.runner.JUnitCore

• Can be invoked manually by running the test class or automated by
using a script (like ant)

9

JUnit 4 demo with eclipse

• Unit to be tested
✦Team (from assignment 6), method: Team (League league)

✦We want to make sure that when we construct a team using the
constructor that the bidirectionality constraint holds:

➡The team.league is league AND league.teams contains the team.

✦To make the test fail initially we’ll comment this line out of the Team
constructor:

10

	 public Team(League league) {
	 	 this.league = league;
//		 this.league.addTeam(this);
	 	
	 	 lineups = new HashSet<Lineup>();
	 }

JUnit 4 demo with eclipse:
Create test class

• create a new source folder for the test:
✦right (or ctrl) click the project, select New -> Source Folder, call it test

• create the test case class:
✦right (ctrl) click on Team, select New -> JUnit Test Case

✦select "New JUnit 4 test" and set source folder to test,

✦press Next, select method(s) to test (Test(League)), press Finish

➡ Note: if JUnit 4 is not on the build path, you'll be prompted to add it.

✦Now you should have a class/file called TeamTest.java in the test source
folder.

11

JUnit 4 demo with eclipse:
Add test code, Run test

• In TeamTest.java, method testTeam(), add code:

✦Note @Test before method indicates the method is a test method.

• Run the test case:
✦right (ctrl) click on your new test class and select Run-As → JUnit Test.

✦ It fails.

✦Uncomment out the line we changed. It passes.

12

	 	 League l = new League();
	 	 Team t = new Team(l);
	 	 assertEquals(t.getLeague(),l);
	 	 assertTrue(l.getTeams().contains(t));

JUnit 4 demo with eclipse:
The complete TeamTest.java file

• TeamTest.java

13

package FF;
import static org.junit.Assert.*;

import org.junit.Test;

public class TeamTest {

	 @Test
	 public void testTeam() {
	 	 League l = new League();
	 	 Team t = new Team(l);
	 	 assertEquals(t.getLeague(),l);
	 	 assertTrue(l.getTeams().contains(t));	
	 	 }
}

