
Programming Assignment #3

Practice with pointers and dynamic memory allocation

CS 2308.255 and 256, Spring 2013
Instructor: Jill Seaman

Due:
section 255: in class Thursday, 2/21/2013 (upload electronic copy by 4:00pm)
section 256: in class Wednesday, 2/20/2013 (upload electronic copy by 1:00pm)

Problem:

Write a C++ program that will test five functions described below that use pointers and
dynamic memory allocation.

The Functions:

You will write the five functions described below. Then you will call them from the main
function, to demonstrate their correctness.

1. maximum: takes an int array and the array's size as arguments. It should
return the maximum value of the array elements. Do not use square brackets
ANYWHERE in the function (use pointers instead). Extra challenge: Do not use
the loop variable in the body of the loop.

2. oddSwap: The following function uses reference parameters. Rewrite the
function so it uses pointers instead of reference variables. When you test this
function from the main program, demonstrate that it changes the values of the
variables passed into it.

int oddSwap (int &x, int &y)
{
 int temp = x;
 x = y * 5;
 y = temp * 5;
 return x + y;
}

3. expand: takes an int array and the array's size as arguments. It should create a
new array that is twice the size of the argument array. The function should copy
the contents of the argument array to the new array, and initialize the unused
elements of the new array with -1. The function should return a pointer to the
new array.

4. concatenate: takes two int arrays and the arrays' sizes as arguments (that's 4
arguments). It should create a new array big enough to store both arrays. Then
it should copy the contents of the first array to the new array, and then copy the
contents of the second array to the new array in the remaining elements, and
return a pointer to the new array.

5. subArray: Define subArray as follows:

int *subArray (int *array, int start, int length) {
 return duplicateArray(__________, ___________);
}

Add the code for duplicateArray from the lecture slides for chapter 9 (slide 24).
Fill in the blanks with expressions so that the function subArray behaves as
follows:
 It takes an int array, a start index and a length as arguments. It creates a
new array that is a copy of the elements from the original array starting at the
start index, and has length equal to the length argument. For example,
subArray(aa,5,4) would return a new array containing only the elements aa[5],
aa[6], aa[7], and aa[8].

DO NOT alter duplicateArray, DO NOT alter subArray as defined above.

Output:

Test these five functions using the main function as a driver. The driver should pass
(constant) test data as arguments to the functions. Select appropriate test data for
each function and then call that function using the test data. For each function, you
should output three lines: a label indicating which function is being tested, the expected
results (use one string with the values “hard coded” into it), and the actual results (use
the actual values returned/altered by the function in this line).

testing maximum:
Expected maximum: 9
Actual maximum: 9

testing oddSwap
Expected result: 40 a: 25 b: 15
Actual results : 40 a: 25 b: 15

testing expand:
Expected result: 1 2 3 4 5 6 7 8 9 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Actual result: 1 2 3 4 5 6 7 8 9 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

testing concat:
Expected result: 1 2 3 4 5 6 7 8 9 0 11 22 33 44 55
Actual result: 1 2 3 4 5 6 7 8 9 0 11 22 33 44 55

testing subArray:
Expected result: 6 7 8 9
Actual result: 6 7 8 9

RULES:

• DO NOT change the names of the functions!
• DO NOT do any output from the functions (only from main)!
• DO NOT do any input at all!

NOTES:

• This program DOES need to be done in a Linux or Unix environment.

• It is your responsibility to fully test your functions. They must work for ANY valid
input. The main function you submit must have at least one test case for each
function. However, you should test the functions over several different test cases
to convince yourself that they work.

• You do not need to use named constants for your test data (or array sizes) in
this assignment, but you DO need to follow the rest of the style guidelines
including function definition comments.

• Your program should release any dynamically allocated memory when it is
finished using it.

• Optional: you may want to include a function that displays the values of an int
array on one line, separated by spaces, for displaying test arrays and results.

Logistics:

Your program must be free of compiler errors.

Do you not use any features of C++ that we have not yet covered in class (use features
from Chapters 1-9 and 10-11 only.

Name your file assign3_xxxxx.cpp where xxxxx is your TX State NetID (your
txstate.edu email id). The file name should look something like this: assign3_js236.cpp

There are two steps to the turn-in process:

1. Submit an electronic copy using the Assignments tool in TRACS no later than one
hour before class the day the assignment is due (see top of page 1).

2. Submit a printout of the file at the beginning of class, the day the assignment is
due. Make sure you name is on it.

If you are unable to turn a printout in during class, you have until 5pm on the
day the assignment is due to turn it in to the computer science department office
(Nueces 247). They will stamp it and put it in my mailbox. DO NOT slide it
under my office door.

