
1

Ch 11. Structured Data
(11.2 to 11.8)

CS 2308
Spring 2013

Jill Seaman

2

Composite Data Types (C/C++)

! Arrays: ordered sequence of values of the same
type

! Structures: named components of various types
− Used to represent a relationship between values of

different types
− Example: student

✦ ID Number
✦ Name
✦ Age
✦ Major
✦ Address

the values are related because
they belong to the same student

3

Structures

! Define the student as a struct in C++:

− Defines a new data type
− The components are called “members” (or “fields”).

! To define a variable of type Student:

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

Student csStudent;
4

Initializing, Accessing Structures
! Struct variable can be initialized when it is

defined:
− values must be in order of struct declaration

! Use dot notation to access members of a struct
variable:

student1.age = 18;
student2.idNumber = 123456;
cin >> gradStudent.name;
gradStudent.major = ”Rocket Science”;

Student student1 = {123456,”John Smith”,22, ”Math”};

5

Structures: operations

! Valid operations over entire structs:
− assignment: student1 = student2;
− function call: showStudent(gradStudent);

! Invalid operations over structs:
− comparison: student1 == student2
− output: cout << student1;
− input: cin >> student2;
− Must do these member by member

6

Arrays of Structures

! You can store values of structure types in arrays.

! Each student is accessible via the subscript
notation.

! Members of structure accessible via dot notation

Student roster[40]; //holds 40 Student structs

roster[0] = student1;

cout << roster[0].name << endl;

7

Nested Structures

! You can nest one structure inside another.

! Use dot operator multiple times to get into the
nested structure:

struct Address {
 string street;
 string city;
 string state;
 int zip;
};

struct Student {
 int idNumber;
 string name;
 Address homeAddress;
};

Student student1;
student1.name = “Bob Lambert”;
student1.homeAddress.city = “San Angelo”;
student1.homeAddress.state = “TX”;

8

Structures as function arguments

! Structure variables may be passed as arguments
to functions.

! Like regular variables:
− structure variables are passed by value by default.
− pass by reference can be used to change the value

of a member in the function.

void showStudent(Student x) {
 cout << x.idNumber << endl;
 cout << x.name << endl;
 cout << x.age << endl;
 cout << x.major << endl;
}

