
1

Ch 13: Introduction to Classes

CS 2308
Spring 2013

Jill Seaman

2

13.1 Procedural Programming
! Data is stored in variables

- Perhaps using arrays and structs.
! Program is a collection of functions that perform

operations over the variables
- Good example: electronics inventory program

! Usually variables are passed to the functions as
arguments

• Focus is on organizing and implementing the
functions.

3

Procedural Programming: Problem
! It is not uncommon for

- program specifications to change
- representations of data to be changed for

internal improvements.
! As procedural programs become larger and

more complex, it is difficult to make changes.
- A change to a given variable or data structure

requires changes to all of the functions operating
over that variable or data structure.

! Example: use vectors instead of arrays for the
inventory 4

Object Oriented Programming:
Solution

! An object contains
- data (like fields of a struct)
- functions that operate over that data

! Code outside the object can access the data
only via the object’s functions.

! If the representation of the data in the object
needs to change:

- Only the object’s functions must be redefined to
adapt to the changes.

- The code outside the object does not need to
change, it accesses the object in the same way.

5

Object Oriented Programming:
Concepts

! Encapsulation: combining data and code into a
single object.

! Data hiding (or Information hiding) is the
ability to hide the details of data representation
from the code outside of the object.

! Interface: the mechanism that code outside the
object uses to interact with the object.

- The object’s (public) functions
- Specifically, outside code needs to know only the

function prototypes (not the function bodies).
6

Object Oriented Programming:
Real World Example

! In order to drive a car, you need to understand
only its interface:

- ignition switch
- gas pedal, brake pedal
- steering wheel
- gear shifter

! You don’t need to understand how the steering
works internally.

! You can operate any car with the same interface.

7

Classes and Objects
! A class is like a blueprint for an object.

- a detailed description of an object.
- used to make many objects.
- these objects are called instances of the class.

! For example, the String class in C++.
- Make an instance (or two):

- use the object’s functions to work with the objects:

String cityName1(“Austin”), cityName2(“Dallas”);

int size = cityName1.length();
cityName2.insert(0,”Big “); 8

13.2 The Class
! A class in C++ is similar to a structure.

- It allows you to define a new (composite) data type.
! A class contains:

- variables AND
- functions

! These are called members
• Members can be:

- private: inaccessible outside the class
- public: accessible outside the class.

9

Example class declaration
// models a 12 hour clock
class Time //new data type
{
 private:
 int hour;
 int minute;
 void addHour();

 public:
 void setHour(int);
 void setMinute(int);
 int getHour() const;
 int getMinute() const;

 string display() const;
 void addMinute();
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

10

Access rules
! Used to control access to members of the class
! public: can be accessed by functions inside

AND outside of the class
! private: can be called by or accessed by only

functions that are members of the class (inside)
- member variables (attributes) are declared private,

to hide their definitions from outside the class.
- certain functions are declared public to provide

(controlled) access to the hidden/private data.
- these public functions form the interface to the class

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

11

Using const with member functions

! const appearing after the parentheses in a
member function declaration specifies that the
function will not change any data in the calling
object.

! These member functions won’t change hour or
minute.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int getHour() const;
int getMinute() const;
string display() const;

12

Defining member functions
! Member function definitions usually occur

outside of the class definition (in a separate file).
! The name of each function is preceded by the

class name and scope resolution operator (::)
-

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

void Time::setHour(int hr) {
 hour = hr;
}

hour appears to be undefined,
but it is a member variable of the Time class

13

Accessors and mutators

! Accessor functions
- return a value from the object (without changing it)
- a “getter” returns the value of a member variable

! Mutator functions
- Change the value(s) of member variable(s).
- a “setter” changes (sets) the value of a member

variable.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

14

Defining Member Functions

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

void Time::setHour(int hr) {
 hour = hr; // hour is a member var
}
void Time::setMinute(int min) {
 minute = min; // minute is a member var
}
int Time::getHour() const {
 return hour;
}
int Time::getMinute() const {
 return minute;
}

void Time::addHour() { // a private member func
 if (hour == 12)
 hour = 1;
 else
 hour++;
}

15

Defining Member Functions

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

void Time::addMinute() {
 if (minute == 59) {
 minute = 0;
 addHour(); // call to private member func
 } else
 minute++;
}

string Time::display() const {
// returns time in string formatted to hh:mm
 ostringstream sout; //include <sstream>
 sout.fill('0'); //padding char for setw
 sout << hour << ":" << setw(2) << minute;
 return sout.str();
}

16

13.3 Defining an instance of the
class

! ClassName variable (like a structure):

! This defines t1 to contain an object of type Time
(the values of hour and minute are not set).

! Access public members of class with dot
notation:

! Use dot notation OUTSIDE class only.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Time t1;

t1.setHour(3);
t1.setMinute(41);
t1.addMinute();

17

Using the Time class

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int main() {
 Time t;
 t.setHour(12);
 t.setMinute(58);
 cout << t.display() <<endl;
 t.addMinute();
 cout << t.display() << endl;
 t.addMinute();
 cout << t.display() << endl;
 return 0;
}

12:58
12:59
1:00

Output:

18

Do not store stale data

! Why not store display string in a variable instead
of composing it every time?

! Because it could become stale.
- If the minute or hour changes, then the data in the

object would be inconsistent:
- stored display string would not match new hours

and minutes.
• Don’t store any data that could become stale,

compute it in a member function instead.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

19

13.4 Setters and getters:
what’s the point?

! Why have setters and getters that just do
assignment and return values?

! Why not just make the member variables public?

! Setter functions can validate the incoming data.
- setMinute can make sure minutes are between 0

and 59 (if not, it can report an error).
! Getter functions could act as a gatekeeper to the

data or provide type conversion.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

20

13.5 Separating Specs from
Implementation

! Class declarations are usually stored in their
own header files (Time.h)
- called the specification file
- filename is usually same as class name.

! Member function definitions are stored in a
separate file (Time.cpp)
- called the class implementation file
- it must #include the header file,

! Any program/file using the class must include
the class’s header file (#include “Time.h”)

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

21

13.6 Inline member functions

• Member functions can be defined
- after (outside) the class declaration (normally)
- inline: in class declaration

• Inline appropriate for short function bodies:
class Time {
 private:
 int hour;
 int minute;

 public:
 int getHour() const
 { return hour; }
 int getMinute() const
 { return minute; }
 void setHour(int);
 void setMinute(int); // ... class decl cont.

22

13.7 Constructors

• A constructor is a member function with the same
name as the class.

• It is called automatically when an object is created
• It performs initialization of the new object
• It has no return type

class Time
{
 private:
 int hour;
 int minute;
 void addHour();
 public:
 Time(); // Constructor prototype
...

23

Constructor Definition
! Note no return type, prefixed with Class::

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

// file Time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

#include "Time.h"

Time::Time() { // initializes hour and minute
 hour = 12;
 minute = 0;
}
void Time::setHour(int hr) {
 hour = hr;
}
void Time::setMinute(int min) {
 minute = min;
} 24

Constructor “call”
! From main:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

//using Time class (Driver.cpp)
#include<iostream>
#include "time.h"
using namespace std;

int main() {
 Time t; //Constructor called implicitly here

 cout << t.display() <<endl;
 t.addMinute();
 cout << t.display() << endl;
 return 0;
}

12:00
12:01

Output:

25

Default Constructors

! A default constructor is a constructor that takes
no arguments (like Time()).

! If you write a class with NO constructors, the
compiler will include a default constructor for
you, one that does nothing.

! The original version of the Time class did not
define a constructor, so the compiler provided a
“do-nothing” constructor for it.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

26

13.8 Passing Arguments to
Constructors

• To create a constructor that takes arguments:
- Indicate parameters in prototype:

- Use parameters in the definition:

Time::Time(int hr, int min) {
 hour = hr;
 minute = min;
}

class Time
{
 public:
 Time(int,int); // Constructor prototype
...

27

Passing Arguments to Constructors

• Then pass arguments to the constructor when you
create an object:

int main() {
 Time t (12, 59);
 cout << t.display() <<endl;
}

12:59
Output:

28

Classes with no Default Constructor

• When all of a class's constructors require arguments,
then the class has NO default constructor.
- C++ will NOT automatically generate a constructor

with no arguments unless your class has NO
constructors at all.

• When there are constructors, but no default
constructor, you must pass the required arguments to
the constructor when creating an object.

29

13.9 Destructors

• Member function that is automatically called when an
object is destroyed

• Destructor name is ~classname, e.g., ~Time
• Has no return type; takes no arguments
• Only one destructor per class, i.e., it cannot be

overloaded, cannot take arguments
• If the class allocates dynamic memory, the destructor

should release (delete) it

30

Destructors

• Example: class decl
An alternative way to declare the PasswordManager:

#include <string>
using namespace std;

 class PasswordManager
 {
 private:
 char *encryptedPassword;

 public:
 PasswordManager(char *encPW); //constructor
 ~PasswordManager(); //destructor
 };

pwman.h

31

Destructors

• Example: member function definitions (class impl)

#include "pwman.h"

PasswordManager::PasswordManager(char *encPW){
 encryptedPassword = new char [strlen(encPW)+1];
 strcpy(encryptedPassword,encPW);
}

PasswordManager::~PasswordManager() {
 delete [] encryptedPassword;
}

pwman.cpp

32

Destructors

• Example: member function definitions (class impl)

• When is an object destroyed?
- at the end of its scope
- when it is deleted (if it’s dynamically allocated)

int main() {

 char k[] = “SSS”;
 PasswordManager pm(k); //calls constructor

 //do stuff with pm here

 return 0;
} //end of prog, pm destroyed here, calls destructor

33

13.10 Overloaded Constructors

• Recall: when 2 or more functions have the same
name they are overloaded.

• A class can have more than one constructor
- They have the same name, so they are overloaded

• Overloaded functions must have different parameter
lists: class Time

{
 private:
 int hour;
 int minute;
 public:
 Time();
 Time(int);
 Time(int,int);
... 34

Overloaded Constructors
! definitions:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include "Time.h"

Time::Time() {
 hour = 12;
 minute = 0;
}
Time::Time(int hr) {
 hour = hr;
 minute = 0;
}
Time::Time(int hr, int min) {
 hour = hr;
 minute = min;
}

35

Overloaded Constructor “call”
! From main:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int main() {
 Time t1;
 Time t2(2);
 Time t3(4,50);

 cout << t1.display() <<endl;
 cout << t2.display() <<endl;
 cout << t3.display() << endl;
 return 0;
}

Output:
12:00
2:00
4:50

36

Overloaded Member Functions

• Non-constructor member functions can also be
overloaded

• Must have unique parameter lists as for constructors
class Time
{
 private:
 int hour;
 int minute;
 public:
 Time();
 Time(int);
 Time(int,int);
 void addMinute(); //adds one minute
 void addMinute(int); //adds minutes from arg
...

37

13.12 Arrays of Objects

• Objects can be the elements of an array:

• Default constructor is used to initialize each element
when the array is defined

int main() {

 Time missedCalls[10]; //times of last 10 missed calls

}

38

Arrays of Objects

• To invoke a constructor that takes arguments, you
must use an initializer list:

• The constructor taking one argument is used to
initialize each of the 10 Time objects here

int main() {

 Time missedCalls[10] = {1,2,3,4,5,6,7,8,9,10};

}

39

Arrays of Objects

• If the constructor requires more than one argument,
the initializer must take the form of a function call:
int main() {

 Time missedCalls[5] = {Time(1,5),
 Time(2,13),
 Time(3,24),
 Time(3,55),
 Time(4,50)};

}

40

Arrays of Objects

• It isn't necessary to call the same constructor for each
object in an array:

• If there are fewer initializers in the list than elements
in the array, the default constructor will be called for all
the remaining elements.

int main() {

 Time missedCalls[7] = {1,
 Time(2,13),
 Time(3,24),
 4,
 Time(4,50)};
}

41

Accessing Objects in an Array

• Objects in an array are referenced using subscripts

• Member functions are referenced using dot notation:

missedCalls[2].setMinute(30);

cout << missedCalls[4].display() << endl;

