
1

Ch 9. Pointers

CS 2308
Spring 2013

Jill Seaman

A pointer is a variable that contains the address of a 
variable.  Pointers are much used in C, partly because 
they are sometimes the only way to express a 
computation, and partly because they usually lead to 
more compact and efficient code than can be obtained 
in other ways.  Pointers and arrays are closely related; 
this chapter also explores this relationship and shows 
how to exploit it.

Pointers have been lumped with the goto statement 
as a marvelous way to create impossible-to-
understand programs.  This is certainly true when they 
are used carelessly, and it is easy to create pointers 
that point somewhere unexpected.  With discipline, 
however, pointers can also be used to achieve clarity 
and simplicity.  This is the aspect that we will try to 
illustrate.

2

A Quote

From: “The C Programming Language (2nd ed.)”, Brian W. Kernighan and 
Dennis M.Ritchie, Englewood Cliffs, NJ: Prentice Hall. 1988.  p. 93.

3

9.1 The Address Operator
! Consider main memory to be a sequence of consecutive cells 

(1 byte per cell).
! The cells are numbered (like an array).  The number of a cell 

is its address.
! When your program is compiled, each variable is allocated a 

sequence of cells, large enough to hold a value of its type.

! The address operator (&) returns the address of a variable.

! Addresses in C/C++ are displayed in hexadecimal.  [bffffb0c = 3,221,224,204]

int x = 99;
cout << x << endl;
cout << &x << endl;

99
0xbffffb0c

Output:

4

9.2 Pointer Variables

! A pointer variable (or pointer):
− contains the address of a memory cell

! An asterisk is used to define a pointer variable

! “ptr is a pointer to an int”  or
! “ptr can hold the address of an int”

int *ptr;

int * ptr;  //same as above
int* ptr;   //same as above



5

Using Pointer Variables

! Assigning an address to a pointer variable:
int x = 99;
int *ptr;

ptr = &x;
cout << x << endl;
cout << ptr << endl;

ptr x

bffffb0c 99

99
0xbffffb0c

Output:

address of x: 0xbffffb0c
6

Using Pointer Variables
Another example

! Assigning an address to a pointer variable:

int rate = 100;
int *s_rate;

s_rate = &rate;
cout << rate << endl;
cout << s_rate << endl;

100
1004

Output:

s_rate

7

Dereferencing Operator: *
! The unary operator * is the indirection or dereferencing 

operator.
! It allows you to access the item that the pointer points to.
! *ptr is an alias for the variable that ptr points to.

int x = 1;
int y = 2;
int *ip;

ip = &x;     // ip points to x
y = *ip;     // y is assigned what ip points to
*ip = 100;   // (the variable ip points to) gets 100

ip x

bffffb0c 1

y

2 1100X X
8

pointer declaration vs. dereferencing
! The asterisk is used in 2 different contexts for 

pointers, meaning two different things

1.To declare a pointer, in a variable definition:

2.To dereference a pointer, in an expression

int *ip;       // ip is defined to be a pointer to an int

y = *ip;     // y is assigned what ip points to



9

Dereferencing Operator

! Another example
int x = 25, y = 50, z = 75;
int *ptr;

ptr = &x;
*ptr = *ptr + 100;

ptr = &y;
*ptr = *ptr + 100;

ptr = &z;
*ptr = *ptr + 100;

cout << x << “ “ << y << “ “ << z << endl;

10

9.3 Pointers and Arrays

! You can treat an array variable as if it were a pointer 
to its first element.

int numbers[] = {10, 20, 30, 40, 50};

cout << “first: ” << numbers[0] << endl;
cout << “first: ” << *numbers << endl;

cout << &(numbers[0]) << endl;
cout << numbers << endl;

first: 10
first: 10
0xbffffb00
0xbffffb00

Output:

numbers = 0xbffffb00 10
0xbffffb04 20
0xbffffb08 30
0xbffffb0c 40
0xbffffb10 50

Array is orange

Addresses in
white boxes

11

Pointer Arithmetic

! When you add a value to a pointer, you are actually 
adding that value times the size of the data type 
being referenced by the pointer.
int numbers[] = {10, 20, 30, 40, 50};

// sizeof(int) is 4.
// Let us assume numbers is stored at 0xbffffb00
// Then numbers+1 is really 0xbffffb00 + 1*4, or 0xbffffb04
// And numbers+2 is really  0xbffffb00 + 2*4, or 0xbffffb08 
// And numbers+3 is really  0xbffffb00 + 3*4, or 0xbffffb0c 

0xbffffb00 10
0xbffffb04 20
0xbffffb08 30
0xbffffb0c 40
0xbffffb10 50

Array is orangeAddresses in
white boxes

12

Pointer Arithmetic
! Note unary * has higher precedence than +

! Note: array[index] is equivalent to *(array + index)

int numbers[] = {10, 20, 30, 40, 50};

cout << “second: ” << numbers[1] << endl;
cout << “second: ” << *(numbers+1) << endl;

cout << "size: " << sizeof(int) << endl;
cout << numbers << endl;
cout << numbers+1 << endl;

second: 20
second: 20
size: 4
0xbffffb00
0xbffffb04

Output:



13

Pointers and Arrays
! pointer operations can be used with array 

variables.

! subscript operations can be used with 
pointers.

! Only difference: you cannot change the value 
of the array variable.

int list[10];
cin >> *(list+3);

int list[] = {1,2,3};
int *ptr = list;
cout << ptr[2];

double totals[20];
double *dptr;
dptr = totals;   //ok
totals = dptr;   //not ok, totals is a const

14

9.4 Pointer Arithmetic

! Operations on pointers over data type d:

− ptr+n where n is int:   ptr+n*sizeof(d)
− ptr–n where n is int:   ptr-n*sizeof(d)
− ++ and -- :   ptr=ptr+1 and ptr=ptr-1
− += and -=
− subtraction: ptr1 – ptr2

result is number of values of type d between the 
two pointers.

d *ptr;

15

9.5 Initializing Pointers 

! Pointers can be initialized as they are defined.

! Note: pointers to data type d can be defined 
along with other variables of type d.

int myValue;
int *pint = &myValue;

int ages[20];
int *pint1 = ages;

int *p1 = &myValue, *p2=ages, x=1;

double x, y, *d, radius;

note: you are initializing the pointer,
          NOT what the pointer points to.

16

9.6 Comparing Pointers
! pointers maybe compared using relational 

operators: 
   <   <=   >   >=   ==   !=

! Examples:

! What is the difference?
−  ptr1 <  ptr2
− *ptr1 < *ptr2

int arr[25];

cout << (&arr[1] > &arr[0]) << endl;
cout << (arr == &arr[0]) << endl;
cout << (arr <= &arr[20]) << endl;
cout << (arr > arr+5) << endl;



17

9.7 Pointers as Function Parameters

! Use pointers to implement pass by reference.

! How is it different from using reference 
parameters?

//prototype: void changeVal(int *);

void changeVal (int *val) {
   *val = *val * 11;
}

int main() {
   int x;
   cout << "Enter an int " << endl;
   cin >> x;
   changeVal(&x);
   cout << x << endl;
}

18

Pointers as array parameter
! Pointer may be used as a parameter for array arg

! What?  

double totalSales(double *arr, int size) {
   double sum = 0.0;
   for (int i=0; i<size; i++) {
      sum += arr[i];               //OR: sum += *arr++;
   }
   return sum;
}

int main() {
   double sales[4];
   // input data into sales here
   cout << “Total sales: “ << totalSales(sales, 4) << endl;
}

sum += *arr++;

sum = sum + *arr;
arr = arr+1;

Note: * and ++ have same 
precedence, but associate right 
to left:    *(arr++)
not: (*arr)++

19

9.8 Dynamic Memory Allocation

! When a function is called, memory for local 
variables is automatically allocated.

! When a function exits, memory for local variables 
automatically disappears.

! Must know ahead of time the maximum number 
of variables you may need.

! Dynamic Memory allocation allows your program 
to create variables on demand, during run-time.

20

The new operator

! “new” operator requests dynamically allocated 
memory for a certain data type:

! new operator returns address of newly created 
anonymous variable.

! use dereferencing operator to access it:

int *iptr;
iptr = new int;

*iptr = 11;
cin >> *iptr;
int value = *iptr / 3;



21

Dynamically allocated arrays

! dynamically allocate arrays with new:

! Program will throw an exception and terminate if 
not enough memory available to allocate

int *iptr;  //for dynamically allocated array
int size;

cout << “Enter number of ints: “;
cin >> size;
iptr = new int[size];

for (int i=1; i<size; i++) {
   iptr[i] = i;
} 

22

delete!
! When you are finished using a variable created 

with new, use the delete operator to destroy it:

! Do not “delete” pointers whose values were NOT 
dynamically allocated using new!

! Do not forget to delete dynamically allocated 
variables (Memory Leaks!!).

int *ptr;
double *array;

ptr = new int;
array = new double[25];
. . .
delete ptr;
delete [] array;  // note [] required for dynamic arrays!

23

9.9 Returning Pointers from Functions

! functions may return pointers:

! The returned pointer must point to
− dynamically allocated memory OR
− an item passed in via an argument

int * findZero (int arr[]) {
   int *ptr;
   ptr = arr;
   while (*ptr != 0)
      ptr++;
   return ptr;
}

NOTE: the return type of this function 
is (int *) or pointer to an int.

NOTE: if the function returns dynamically allocated memory,
then it is the calling functions responsibility to delete it. 24

Returning Pointers from Functions:
duplicateArray

int a [5] = {11, 22, 33, 44, 55};
int *b = duplicateArray(a, 5);
for (int i=0; i<5; i++) 
   if (a[i] == b[i])
      cout << i << “ ok” << endl;
delete [] b;  //caller deletes mem

0 ok
1 ok
2 ok
3 ok
4 ok

Output

int *duplicateArray (int *arr, int size) {
   
   int *newArray;
   if (size <= 0)         //size must be positive
      return NULL;

   newArray = new int [size];  //allocate new array

   for (int index = 0; index < size; index++)
      newArray[index] = arr[index];  //copy to new array

   return newArray;
}



25

Problems returning pointers
(watchout)

! Bad:

− what happens to list on function exit?

! Good:

int *getList() {
   int list[80];
   for (int i = 1; i<80; i++)
      list[i] = i;
   return list;
}

int *getList () {
   int *list;
   list = new int[80];
   for (int i=1; i<80; i++)
      list[i] = i;
   return list;
}


