
1

CS1428 Review

Chapters 6-7

CS 2308
Spring 2013

Jill Seaman

2

Function Definitions
! Function definition pattern:

★ datatype: the type of data returned by the function.
★ identifier: the name by which it is possible to call the 

function.
★ parameters: Like a regular variable declaration, act 

within the function as a regular local variable. Allow 
passing arguments to the function when it is called. 

★ statements: the function's body, executed when called.

datatype identifier (parameter1, parameter2, ...) {
  statements . . . 
}

datatype identifier 

Where a parameter is:

3

Function Call, Return Statement
! Function call expression

★ Causes control flow to enter body of function named 
identifier.

★ parameter1 is initialized to the value of expression1, 
and so on for each parameter

★ expression1 is called an argument.
! Return statement:

★ inside a function, causes function to stop, return 
control to caller.

! The value of expression becomes the value of the 
function call

identifier ( expression1, . . . )

char
short
int
long

return expression;

4

Example: Function

! What are the parameters? arguments?
! What is the value of:  addition (5,3)?
! What is the output?

// function example
#include <iostream>
using namespace std;
int addition (int a, int b) {
   int r;
   r=a+b;
   return (r);
}
int main () {
   int z;
   z = addition (5,3);
   cout << "The result is " << z;
   return 0;
}



5

Void function
! A function that returns no value:

✴ use void as the return type.
! the function call is now a statement (it does not 

have a value)

void printAddition (int a, int b) {
   int r;
   r=a+b;
   cout << “the answer is: “ << r << endl;
}

int main () {
   printAddition (5,3);
   return 0;
}

6

Prototypes
! In a program, function definitions must occur 

before any calls to that function
! To override this requirement, place a prototype of 

the function before the call.
! The pattern for a prototype:

✴ the function header without the body (parameter 
names are optional).

datatype identifier (type1, type2, ...);

7

Arguments passed by value

! Pass by value: when an argument is passed to a 
function, its value is copied into the parameter. 

! It is implemented using variable initialization 
(behind the scenes):

! Changes to the parameter in the function body 
do not affect the value of the argument in the 
call

! The parameter and the argument are stored in 
separate variables; separate locations in 
memory.

int param = argument;

8

Example: Pass by Value

!  
#include <iostream>
using namespace std;

void changeMe(int);

int main() {
   int number = 12;
   cout << "number is " << number << endl;
   changeMe(number);
   cout << "Back in main, number is " << number << endl;
   return 0;
}

void changeMe(int myValue) { 
   myValue = 200;
   cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 12

int myValue = number;

changeMe failed to change the argument!



9

Parameter passing by Reference

! Pass by reference: when an argument is passed 
to a function, the function has direct access to 
the original argument (no copying).

! Pass by reference in C++ is implemented using 
a reference parameter, which has an ampersand 
(&) in front of it:

! A reference parameter acts as an alias to its 
argument, it is NOT a separate storage location.

! Changes to the parameter in the function DO 
affect the value of the argument 

void changeMe (int &myValue);

10

Example: Pass by Reference

!  
#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
   int number = 12;
   cout << "number is " << number << endl;
   changeMe(number);
   cout << "Back in main, number is " << number << endl;
   return 0;
}

void changeMe(int &myValue) { 
   myValue = 200;
   cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 200

myValue is an alias for number,
only one shared variable

11

Overloaded Functions

! Overloaded functions have the same name but 
different parameter lists.

! The parameter lists of each overloaded function 
must have different types and/or number of 
parameters.

! Compiler will determine which version of the 
function to call by matching arguments to 
parameter lists

12

Example: Overloaded functions

!  
double calcWeeklyPay (int hours, double payRate) {
   return hours * payRate;
}
double calcWeeklyPay (double annSalary) {
   return annSalary / 52;
}

int main () {
   int h;
   double r;
   cout << "Enter hours worked and pay rate: ";
   cin >> h >> r;
   cout << "Pay is: " << calcWeeklyPay(h,r) << endl;
   cout << "Enter annual salary: ";
   cin >> r;
   cout << "Pay is: " << calcWeeklyPay(r) << endl; 
   return 0;
}

Output:
Enter hours worked and pay rate: 37 19.5
Pay is: 721.5
Enter annual salary: 75000
Pay is: 1442.31



13

Default Arguments

! A default argument for a parameter is a value 
assigned to the parameter when an argument is 
not provided for it in the function call.

! The default argument patterns:
✴ in the prototype:

✴ OR in the function header:

! c1, c2 are constants (named or literals)

datatype identifier (type1 = c1, type2 = c2, ...);

datatype identifier (type1 p1 = c1, type2 p2 = c2, ...) {
 ...
}

14

Example: Default Arguments

! This function can be called as follows:

void showArea (double length = 20.0, double width = 10.0)
{
   double area = length * width;
   cout << “The area is “ << area << endl;
}

showArea();  ==> uses 20.0 and 10.0
The area is 200

showArea(5.5,2.0);  ==> uses 5.5 and 2.0
The area is 11

showArea(12.0);  ==> uses 12.0 and 10.0
The area is 120

15

Default Arguments: rules

! When an argument is left out of a function call, 
all arguments that come after it must be left out 
as well.

! If not all parameters to a function have default 
values, the parameters with defaults must come 
last:

showArea(5.5);    // uses 5.5 and 10.0
showArea( ,7.1);  // NO, won’t work, invalid syntax

int showArea (double = 20.0, double);  //NO
int showArea (double, double = 20.0);  //OK 16

Scope of variables

! For a given variable definition, in which part of 
the program can it be accessed?
★ Global variable (defined outside of all functions):

can be accessed anywhere, after the definition.
★ Local variable (defined inside of a function):

can be accessed inside the block in which it is 
defined, after the definition.

★ Parameter: can be accessed anywhere inside of its 
function body.

! Variables are destroyed at the end of their 
scope.



17

More scope rules
! Variables in the same exact scope cannot have the 

same name 
- Parameters and local function variables cannot 

have the same name
- Variable defined in inner block can hide a 

variable with the same name in an outer block.

! Variables defined in one function cannot be seen 
from another.

int x = 10;
if (x > 100) {
   int x = 30;
   cout << x << endl;
}
cout << x << endl;

30
10

Output:

18

Arrays
! An array is: 

- A series of elements of the same type 
- placed in contiguous memory locations 
- that can be individually referenced by adding an 

index to a unique identifier.
! To declare an array:

- datatype is the type of the elements
- identifier is the name of the array
- size is the number of elements (constant)

int numbers[5];datatype identifier [size]; 

19

Array initialization
! To specify contents of the array in the definition:

- creates an array of size 3 containing the 
specified values.

- creates an array containing the specified values 
followed by 7 zeros (partial initialization).

- creates an array of size 3 containing the 
specified values (size is determined from list).

float scores[] = {86.5, 92.1, 77.5}; 

float scores[3] = {86.5, 92.1, 77.5}; 

float scores[10] = {86.5, 92.1, 77.5}; 

20

Array access
! to access the value of any of the elements of the 

array individually as if it was a normal variable:

- scores[2] is a variable of type float
! rules about subscripts:

- they always start at 0, last subscript is size-1
- the subscript must have type int 
- they can be any expression

! watchout: brackets used both to declare the array 
and to access elements.

scores[2] = 89.5; 



21

Working with arrays and array 
elements

! An array element: 
- can be used exactly like any variable of the 

element type.
- you can assign values to it, use it in arithmetic 

expressions, pass it as an argument to a function.
! �����������
������������������������������
���	����������������������
- you cannot assign one array to another
- you cannot input into an array
- you cannot compare one array to another 22

Example: Processing arrays

const int NUM_SCORES = 8;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES 
     << “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
   cin >> scores[i];
}

int total = 0;  //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
   total = total + scores[i];
}
double average = 
       static_cast<double>(total) / NUM_SCORES;

Computing the average of an array of scores:

! In the function definition, the parameter type is a 
variable name with an empty set of brackets: [ ]

- Do NOT give a size for the parameter

! In the prototype, empty brackets go after the 
element datatype.

! In the function call, use the variable name for the 
array.

! An array is always passed by reference.
23

Arrays as parameters

void showArray(int values[], int size)

void showArray(int[], int)

showArray(numbers, 5)


