

3

Exam Format

• See exam header for total points (150 or 200):

- * Writing programs/functions/classes/code
- * Multiple choice
- * Tracing code
- Tracing search/sort algorithms
- * Finding errors in code
- * Short answer (some very short, some longer)

Example Problems

See the lecture notes titled:

Final Exam Exercises

on the website

Chapters 1-7 Review

- Know how to program with arrays and functions
- Passing parameters by reference
- Passing arrays to functions
- Overloaded functions
- Default arguments
- Be able to process arrays
 - Be able to find the minimum/maximum value!
 - See review exercises

Ch.8: Searching and Sorting Arrays

- Searching
 - Linear Search
 - Binary Search
- Sorting
 - Bubble Sort
 - Selection Sort
- See review exercises:
 - Describe algorithms in English
 - Sample exercises to demonstrate algorithms

Analysis of Algorithms: efficiency

- Efficiency
- Growth rate functions, which are faster/slower
- Use big-O notation
- Efficiency of
- searching/sorting
- array access and traversal
- Inked list operations
- See the Final Exam Review Exercises for good coverage on this

7

Ch 9: Pointers

- Pointer variables: how to define + initialize
- Address of (&) and Dereferencing (*) operators
- Pointers and arrays
 - * an array variable is the address of its first element
 - * array[index] = *(array + index)
- Dynamic memory allocation
 - * new + delete
 - * allocate new arrays (Programming Assignment 3)
- Pointers as parameters (call by reference, arrays)
- Using pointers with linked lists

8

Ch. 10: Strings and Things

- Char functions: isalpha, isdigit, islower, tolower, ...
- C-strings:
 - representation:
 - char array
 - terminated by null character ('\0')
 - library functions: strlen, strcpy, strcmp
- Predefined string class:
 - initializing string objects.
- operations: =, <<, >>, +, relational ops, [n]
- member functions: length, size, append
- Be able to write functions that processes string data.

Ch 11: Structures

- Structures:
- Definition (new data type) and variables
- How to access members (dot operator)
- Operations (which are valid)
- Arrays of structures
- Pointers to structures (-> operator): s->x (*s).x *(s.x)
- Dynamic memory allocation
- Use of structures in linked lists (Nodes)

Ch.13+14: Classes

- Procedural programming vs object oriented programming
- Encapsulation, Data hiding, Interface
- Fundamentals of classes and objects:
 - Members: variables and functions
 - private vs public, access rules
 - declaration and implementation of classes
 - defining member functions
 - overloaded operators
 - constructors and destructors
 - copy constructor (default)

11

Ch.13+14: Classes

- Fundamentals of classes and objects (cont.):
 - inline member function definitions
 - instance variables vs static variables
 - defining instances of a class (objects)
 - arrays of objects, initialization
- Pointers to objects
 - how to declare, assign
 - using ->
 - dynamic allocation of objects
 - when destructor function is called
 - the "this"pointer

10

C++ Programming on Linux

- Basic shell commands, know how to use
- edit, compile, run (nano, g++, a.out)
- Compiling multiple files:
- How to split up code, what goes where
- g++ a.cpp b.cpp
- separate compilation
 - g++ -c a.cpp
 - g++ -c b.cpp
 - g++ a.o b.o
- makefile: understand the ones used for the assignments, know how to use them

Ch. 17: Linked Lists

- How to define a linked list (node declaration and head pointer definition).
- Adding a node (insert at front or append)
- Insert or delete node from the middle of a list
 - how to advance 2 pointers together
 - be able to set pointers in general case
- How to traverse a linked list to
 - display it, calculate some value
 - find minimum/maximum
 - find last node
- Arrays vs Linked Lists

Ch. 18: Stacks and Queues

- Know what ADT, LIFO and FIFO mean
- Know the 4 basic operations of each data type:

рор	
push	
isEmpty	
isFull	

enqueue dequeue isEmpty isFull

- Understand how to use a stack to perform algorithms done in class
- Be able to show contents of stack or queue after a series of operations (see Final Exam Review Exercises)

Office Hours after last class day

Day	Date	Time
w	5/1	12:00-1:30pm
Th	5/2	3:00-4:30pm
М	5/6	12:00-1:30pm
w	5/8	12:00-1:30pm
		and by appt.

14

How to Study

- Start with the topics from this set of slides (Final Exam Review).
- Use the regular semester lectures to make sure you understand the topics.
- Use the textbook to make sure you understand the lectures about the topics.
- Do the review exercises on the Final Exam Exercises slides.
- Go over the midterm exams and assignment solutions.
- Discuss with others!