
Introduction to
Software Engineering

Chapter 1

1

Introduction to Software Engineering
in the textbook

• 1.1 Professional software development
- What is meant by software engineering.

• 1.2 Software engineering ethics
- See CS2315

• 1.3 Case studies
- An introduction to three examples that are used in

later chapters in the book.

2

What is Software?

• Wikipedia: Software is a collection of computer
programs (and related data) that provides the
instructions for telling a computer what to do and
how to do it.

• Does software include:
- Google chrome? MS Word? Mac OS X?
- An Excel spreadsheet?
- the source code program?
- the machine code version of the program?

• Software is executable.
3

8 different types of software
applications

1. Stand-alone applications
- Run on a local computer, such as a PC.
- Do not need to be connected to a network.

2. Interactive transaction-based applications
- Execute on a remote computer
- Accessed by users from their own computers.
- These include web apps such as e-commerce applications.

3. Embedded control systems
- Software systems that control and manage hardware

devices.
- Numerically, there are probably more embedded systems

than any other type of system.
4

8 different types of software
applications

4. Batch processing systems
- Business systems designed to process data in large batches.
- Process large numbers of individual inputs to create

corresponding outputs.

5. Entertainment systems
- Primarily for personal use
- Intended to entertain the user.

6. Systems for modeling and simulation
- Developed by scientists and engineers to model physical

processes or situations
- Include many, separate, interacting objects.

5

8 different types of software
applications

7. Data collection systems
- Collect data from their environment using a set of sensors.
- Send that data to other systems for processing.

8. Systems of systems
- Composed of a number of other software systems.
- Department of Defense applications

6

Who writes software?

• Computer science students

• Business people, scientists and engineers write
small programs for their own purposes

• Hobbyists (iphone developers?)

• Most software is developed by professional
software developers:

- usually for some specific business purpose
- used by people other than the developer(s)
- usually developed by a team
- often sold to customers

7

Two kinds of software products

• Generic products
- Stand-alone systems that are marketed and sold to anyone.
- Examples – Microsoft office, iPad apps, Angry birds, software for

specific markets: appointments systems for dentists.
- The developer organization decides what the software should do

• Customized products
- Software that is commissioned by a specific customer to meet

their own needs.
- Examples – embedded control systems, air traffic control

software, traffic monitoring systems.
- The customer decides what the software should do and how it

should be changed.

8

What is Software Engineering?

• Software engineering is an engineering discipline that is
concerned with all aspects of software production from
the early stages of system specification through to
maintaining the system after it has gone into use.

• Engineering discipline
- Using appropriate theories and methods to solve problems
- Bearing in mind organizational and financial constraints.
- “getting results of the required quality within the schedule and budget”

• All aspects of software production
- Not just technical process of development.
- Project management
- The development of tools, methods etc. to support software

production.

9

What is Software Engineering?

• Software engineering is a systematic approach to
the production of software that takes into
account practical cost, schedule, and
dependability issues, as well as the needs of
software customers and producers

10

Another definition from the textbook

Why do we need Software
Engineering?

• Without it, software tends to be unreliable and
more difficult to maintain (change).

• See “Software Failures” lecture.

11

Software Quality:
Essential attributes of good software

12

Product
characteristic

Description Example

Functional
Correctness

The software meets its specifications. It
is generally free of defects (bugs).

A calculator app always
gives the correct answer,
for every operation.

Maintainability Software is written in such a way so that
it is easy to change, to meet the
changing needs of customers.

Successfully updating the
Safari Web browser to
work with a new version of
Mac OS X.

Dependability Software dependability includes a range
of characteristics including reliability,
security and safety. Dependable software
should not cause physical or economic
damage in the event of system failure.
Malicious users should not be able to
access or damage the system.

Unauthorized users are
not able to access your
banking account in an
online banking app.

Software Quality:
Essential attributes of good software*

13

Product
characteristic

Description Example

Efficiency Software should not make wasteful use
of system resources such as memory
and processor cycles. Efficiency
therefore includes responsiveness,
processing time, memory utilization, etc.

When you sort your
iTunes library using one of
the column headers, you
see the results almost
immediately.

Acceptability Software must be acceptable to the type
of users for which it is designed. This
means that it must be understandable,
usable and compatible with other
systems that they use.

Facebook privacy
controls: seem to change
often and are difficult for
users to understand.
(Negative example)

Software process
• A structured set of activities used to develop a

software system/product

• Four fundamental activities in a software
process:
- Specification, where customers (and engineers) define

the software that is to be produced and the constraints on
its operation.

- Development, where the software is designed and
programmed (implemented).

- Validation, where the software is checked to ensure that it
is what the customer requires.

- Evolution, where the software is modified to reflect
changing customer and market requirements.

14

Software engineering vs
computer science

• Computer Science is the study of computer
systems including algorithmic processes and the
principles involved in the design of hardware and
software.

• Software Engineering is the practice of designing
and implementing large, reliable, efficient and
economical software by applying the principles
and practices of engineering.
- Some knowledge of computer science is essential for

software engineers.

15

1.2 Software engineering ethics

• The professional societies in the US, ACM and
IEEE, have cooperated to produce a code of
ethical practice.

• The Code contains eight principles related to the
behavior of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy
makers, as well as trainees and students of the
profession.

• http://www.acm.org/about/se-code

16

Rationale for the ACM/IEEE code of
ethics (from the preamble)

Computers have a central and growing role in commerce,
industry, government, medicine, education, entertainment and
society at large. Software engineers are those who contribute
by direct participation or by teaching, to the analysis,
specification, design, development, certification, maintenance
and testing of software systems.

Because of their roles in developing software systems,
software engineers have significant opportunities to do
good or cause harm, to enable others to do good or cause
harm, or to influence others to do good or cause harm. To
ensure, as much as possible, that their efforts will be used for
good, software engineers must commit themselves to making
software engineering a beneficial and respected profession.

17

Some ethical issues specific to
software engineering

• Confidentiality
- Engineers should respect the confidentiality of employers and clients

• Competence
- Engineers should not misrepresent their level of competence.
- They should not knowingly accept work which is outside their

competence.

• Intellectual property rights
- Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc.
- They should ensure that the intellectual property of employers and

clients is protected.

• Computer misuse
- Software engineers should not use their technical skills to misuse other

people’s computers.

18

1.3 Case Studies

The following case studies are used for examples in
the book (see chapter 1 for background).

• A personal insulin pump
- An embedded system in an insulin pump used by diabetics

to maintain blood glucose control.

• A mental health case patient management system
- An information system used to maintain records of people

receiving care for mental health problems.

• A wilderness weather station
- A data collection system that collects data about weather

conditions in remote areas.

19

