
Software Processes

Chapter 2
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Software Processes
in the textbook

• 2.1 Software process models

• 2.2 Process activities

• 2.3 Coping with change
- Skipping 2.3.3 Boehm’s spiral model

• 2.4 The Rational Unified Process
- An example of a modern software process. 
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A software process

• A structured set of activities used to develop a 
software system/product. 

• Many different software processes but all involve 
these activities: 
- Specification – defining what the system should do (requirements)
- Development – defining the organization of the system (design) 

and implementing the system
- Validation – checking that it does what the customer wants;
- Evolution – changing the system in response to changing 

customer needs.

• A software process model (or paradigm) is an 
abstract representation of a software process
- specific processes are derived from each model by adding details
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2.1 Software process models 
(or frameworks, or paradigms)

• The waterfall model
- Separate and distinct phases of specification, development, 

validation and evolution, performed in sequence.
- Planning occurs upfront: “Plan-driven”

• Incremental development
- Specification, development and validation are interleaved in 

cycles, producing a series of versions of the software. 

• Reuse-oriented software engineering
- The system is assembled from existing components. 
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In practice, most large systems are developed using a process 
that incorporates elements from all of these models.



Waterfall model phases

• There are separate identified phases:
- Requirements definition
- System and software design
- Implementation and unit testing
- Integration and system testing
- Operation and maintenance 

• Main drawback: The difficulty of accommodating 
change after the process is underway. 
- In principle, a phase has to be complete before moving on to 

the next phase.
- Change requires “backtracking”: revising previous step(s), 

re-work
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Waterfall model
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What makes it go backwards?

Waterfall model issues

• Partitioning the project into sequential stages makes it 
difficult to respond to changing customer requirements.
- Appropriate only when

a) the requirements are well-understood and 
b) changes will be fairly limited during the design process. 

• Can be used for large systems engineering projects where 
a system is developed at several sites.
- Plan-driven nature of the this model helps coordinate the work. 

• Good when formal methods of software development are 
required.
- Formal methods: using a mathematical model of system specifications 

and refining it to programming language code using transformations
- Good when safety, reliability, and security requirements are critical.
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Incremental software development

• Specification, development and validation are 
interleaved in cycles.

• The system is developed as a series of versions or 
releases (called increments).
- Each version adds functionality to the previous version.
- Only the final version is a complete system.

• Each version is exposed to the user for feedback
- If the intermediate versions are given to the customer(s), it is 

called Incremental Delivery.

• Early versions can implement the most important, 
urgent, or risky features
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Incremental development
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Feedback from use of each version is 
incorporated into next Analyze phase

Versions are not 
complete systems

Incremental development benefits
• The cost of accommodating changing customer 

requirements is reduced. 
- Early versions are incomplete, so less re-work to do.
- May require no changes to current version (add to future version).

• It is easier to get customer feedback on the work that 
has already been done.
- Easier to present a working incremental release than results of 

specification or design phase. 

• Can be plan-driven (all versions planned ahead) OR 
plan each increment as it is encountered.
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Incremental development problems

• The process is not visible
- generally less process documentation, so it’s difficult to 

measure progress.

• System structure tends to degrade as new 
increments are added. 
- UNLESS time and money are spent on refactoring to 

improve the software.
- Refactoring:  disciplined technique for restructuring an 

existing body of code, altering its internal structure 
without changing its external behavior.

- Modifying a program to improve its structure, reduce its 
complexity, or make it easier to understand.
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Reuse-oriented software engineering

• Based on systematic reuse where systems are 
integrated from existing components or COTS 
(Commercial-off-the-shelf) systems.

• Process stages 
- Requirements specification
- Component analysis: search for close matches
- Requirements modification: to reflect available components
- System design with reuse: organize framework around 

acceptable components.
- Development and integration: components are integrated 

along with new code
- System validation 
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Types of software components

• Web services 
- Developed according to service standards 
- Are available for remote invocation from web apps or clients 
- Example: Google maps, Amazon web services

• Library of Classes: framework
- Developed as a package to be integrated (compiled) with a 

component framework such as .NET or J2EE.
- Example: parsekit for Mac OS X apps (scanners/parsers)

• Stand-alone software systems (COTS) that are 
configured for use in a particular environment. 
- Example: PeopleSoft, HR management for companies
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Advantages and Disadvantages of 
Reuse-oriented Software Engineering

• Benefits
- Reduces costs and risks (less code to write) 
- Usually leads to faster delivery. 

• Disadvantages
- Requirements may have to be compromised (no good 

matches)
- Control over evolution of system is lost (dependent on 

developers of the components).
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2.2 Process activities

• The four basic process activities: 
- specification
- development
- validation
- evolution

• organized differently in different development 
processes. (i.e. in sequence or inter-leaved). 

• Same activity may be carried out differently by 
different people, or different process methods
(i.e. specifications can be typed into a document or 
written on cards).
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Software specification

• The process of establishing the requirements:
- the services that are required by the users (features/functions) and 
- the desired constraints on the system’s operation and development.

• Requirements engineering process
- Feasibility study

❖ Is it technically and financially feasible to build the system?
- Requirements elicitation and analysis

❖ What do the system stakeholders require or expect from the system?
❖ May observe existing systems, develop models or prototype

- Requirements specification 
❖ Defining the requirements in detail, write up in a document

- Requirements validation
❖ Checking the requirements for realism, consistency, and 

completeness. 
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The requirements engineering process
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Notice the steps
are interleaved.

Software Development:
design and implementation

• Converting the system specification into an 
executable system.

• Software design
- Description of the structure of the software, data models, 

interfaces, algorithms, etc.

• Implementation
- Translate the design into an executable program

• Design and implementation are closely related and 
may be inter-leaved.
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Design activities

• Architectural design: where you identify 
- the overall structure of the system, 
- the principal components, 
- their relationships and 
- how they are distributed.

• Interface design, where you precisely define the interfaces 
between system components (how the communicate)
(so they can be developed independently). 

• Component design, where you design how each 
component will function 

• Database design, where you design the system data 
structures and how these are to be represented in a 
database. 
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Software validation

• Verification and validation (V & V) is intended to 
- show that a system conforms to its specification and 
- meets the requirements of the system customer.

• Program testing is the principal technique.
- executing the system over simulated data

• Validation may also involve inspections and reviews  
- humans analyze models and source code looking for errors or 

problems
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Testing stages

• Development testing
- Parts of the system are tested independently by developers
- Unit testing: individual program units or classes are tested
- Component testing: coherent groupings of functions or objects 

are tested
- System testing: testing of the system as a whole after integrating 

the components.

• Release testing:
- a separate testing team tests a complete version of the system 

before it is released to users. 

• User testing:
- users or potential users of a system test the system in their own 

environment.
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Software evolution
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• Software must change to remain useful 
- The business environment changes (new functions required)
- Errors must be repaired
- New computers and equipment are added to the system
- The performance or reliability may have to be improved.

• Key problem: managing change to existing 
software systems

• Activities include: 
- Modifying requirements/specifications
- Modifying design
- Modifying the implementation
- Retesting, adding new test cases.

2.3 Coping with change

• Change is inevitable in all large software projects.
- Business changes lead to new and changed system 

requirements
- New technologies open up new possibilities for improving 

implementations
- Changing platforms require application changes

• Change leads to rework:
- new requirements lead to more requirements analysis
- this may lead to redesign of the system or components
- this may lead to changes to the implementation
- this may lead to new tests, and re-testing the system
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Reducing the costs of rework

• Change avoidance: include activities to anticipate 
possible changes before significant rework is 
required. 
- Develop a prototype to show some key features of the system 

to users, let them refine requirements before committing to 
them.

• Change tolerance: design process to accommodate 
change 
- Use incremental development, get feedback from users. 
- Changes likely apply to most recent increment only, OR
- Can be incorporated into later increments. 
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Software prototyping

• A prototype is an initial version of a system used to 
demonstrate concepts and try out design options.

• Allows users to see how well system supports their 
work, may lead to new ideas for requirements

• As prototype is developed, may reveal errors and 
omissions in the requirements

• Can check feasibility of design 
- For a database, make sure it efficient for most common 

queries
- For a user interface, user understands a prototype much 

better than a text description.
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Prototype development process

• Objectives for prototype should be made in advance

• Decide what to put in, what to leave out.
- But must be developed quickly

• Let users test the prototype and evaluate it with 
respect to the objectives 
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Throw-away prototypes

• Prototypes should be discarded after development 
as they are not a good basis for a production 
system:
- It may be impossible to tune the system to meet performance 

and reliability requirements
- Prototypes are normally undocumented
- The prototype structure is usually degraded through quick and 

dirty design
- The prototype probably will not meet normal organizational 

quality standards.
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Incremental delivery

• Incremental development where each version is 
delivered to users, deployed in their environment(s).

• Highest priority requirements are included in early 
increments.

• Requirements are frozen for the current increment, 
though requirements for later increments can 
continue to evolve. 
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Incremental delivery advantages

• Generally same advantages as Incremental 
Development
- Good response to changing requirements

• Major system functionality is available to users 
earlier.

• Early increments act as a prototype to help elicit 
requirements for later increments.

• The highest priority system services tend to receive 
the most testing, since they are developed first.
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Incremental delivery problems

• Generally same problems as Incremental 
Development
- Difficult to design and implement common facilities needed by all 

versions
- Constant upgrading can degrade structure of code

• Contract negotiations are more difficult
- The specification is developed in stages 
- Unable to use the complete system specification as part of the 

development contract. 

• Difficult to replace an existing system:
- Early versions have much less functionality than the system being 

replaced, so users won’t be motivated to use the less functional 
new system. 
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2.4 The (Rational) Unified Process

• Unified Process: A popular iterative process 
framework
- A good example of a hybrid software process model

• Rational Unified Process (RUP) is a refinement 
or specialization of UP
- A product from IBM
- Enables developer organization to tailor UP to its needs, 

manages documentation, etc.

• UP has 6 disciplines (activities) performed over 
4 phases.

• Each phase may have several iterations
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Disciplines of UP

• Business Modeling
- business processes are modeled using use cases

• Requirements

• Design

• Implementation

• Testing

• Deployment
- product is released, distributed, and installed

• Project Management
- scheduling, managing resources
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Four phases of UP

• INCEPTION
- High level requirements established
- Key risks identified

• ELABORATION
- Significant elements (core architecture) are 

programmed and tested

• CONSTRUCTION
- Remainder of system is built and tested

• TRANSITION
- The system is fully deployed to the customer
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Phases of UP

• Disciplines over the phases
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