
System Modeling

Chapter 5

1

System Modeling
in the textbook

• 5.1 Context models

• 5.2 Interaction models

• 5.3 Structural models

• 5.4 Behavioral models

• 5.5 Model-driven engineering

2

System Modeling

• System modeling is
- the process of developing abstract representations of a

system
- each model presents a different perspective of that system.

• System models are Abstract
- Not an alternate representation
- Some details are left out
- Incomplete

3

System Perspectives

• external (or context): shows context or
environment of the system

• interaction: shows interaction
- between the system and its environment, or
- between components within the system

• structural: shows organization of the system
or structure of data

• behavioral: shows dynamic behavior,
including how the system responds to events

4

Different perspectives presented by models:

System Modeling

• Notation used to represent the models:
- Graphical (diagrams)

❖ UML=Unified Modeling Language

- Formal/mathematical (ch 12)

• Models of the system are used in:
- Requirements development

❖ clarification, discussion

- Design process
❖ represent plans for implementation

- Model-driven engineering

• Precision and completeness: not always necessary
5

UML Diagrams

• Activity diagrams: the activities in a process.

• Use case diagrams: interactions between a
system and its environment.

• Sequence diagrams: interactions between
actors and the system and components.

• Class diagrams: classes in the system and
the associations between these classes.

• State diagrams: how the system reacts to
events.

6

We’ll discuss these UML Diagrams

5.1 Context Models

• Primarily an external perspective
- shows how the system is situated or involved in its

context

• Two sub-views within the perspective:

- Static view: shows what other systems the system will
interact with

- Dynamic View: shows how the system is involved in
business processes

7

Simple Context Model
Static view

• Used to define system boundaries
- determines what is done by the system, and what will be

done manually or by some other system
- stakeholders must decide on this early

• Represented as a box and line diagram:
- Boxes show each of the systems involved
- Lines show interaction between systems
- Technically NOT a UML diagram

8

9

Note: <<system>> is an example of a “stereotype” in UML
A mechanism to categorize an element in some way

«system»
MHC-PMS

«system»
Patient record

system

«system»
Appointments

system

«system»
Admissions

system

«system»
Management

reporting
system

«system»
Prescription

system

«system»
HC statistics

system

Fig 5.1: The context of the MHC-PMS UML Activity Diagram
Dynamic view

• Used to show how the system is used in
business processes

• Shows activity and flow of control

10

filled circle: start
filled concentric circle: finish
rounded rectangles: activities
rectangles: other objects (ie the different systems in fig 5.2)
arrows: flow of work
diamonds: branch (and merge)
guards: condition under which flow is taken out of branch
solid bar: activity coordination/concurrency control (fork, join)

11

Fig 5.2: Process model of involuntary detention

Confirm
detention
decision Find secure

place

Admit to
hospital

Transfer to
police station

Transfer to
secure hospital

Inform next
of kin

Inform
social care

Inform
patient of

rights

Update
register

«system»
Admissions

system

«system»
MHC-PMS

«system»
MHC-PMS

Record
detention
decision

[dangerous]

[not available]

[not
dangerous]

[available]

Example of a UML Activity diagram

Note: This diagram is missing one branch and 2 merge diamonds

5.2 Interaction Models
• These model interactions

- between the system and environment or users
- between components within the system

• Uses:
- between user and system: developing requirements
- between system components: help to understand flow of

control in an object oriented system, used in design

• UML Use Case Diagrams:
- represent user-system interactions

• UML Sequence Diagrams:
- represent interactions between components (and actors)

12

5.2.1 Use Case Modeling
• Main purpose: requirements elicitation + analysis

• Use Case: overview of one user/system interaction
- Focused on one goal of the actor

• Use Case Diagram components:
- stick figure: actor (user or system)
- ellipse: named interaction (verb-noun)
- line: indicates involvement in interaction

• Diagram is supplemented with further details
describing the use case:

- simple textual description or
- structured description (form/template/table) or
- sequence diagram(s)

13 14

Note: arrows are not part of UML, but shows direction of data flow

Fig 5.3: Transfer data use case

Medical receptionist Patient record system

Transfer data

Note: primary actor on left, supporting actor on right

Example of a UML Use case diagram

15

Fig 5.4: Tabular description of
Transfer data use case

MHC-PMS: Transfer dataMHC-PMS: Transfer data

Actors Medical receptionist, patient records system (PRS)

Description A receptionist may transfer data from the MHC-PMS to a
general patient record database that is maintained by a health
authority. The information transferred may either be updated
personal information (address, phone number, etc.) or a
summary of the patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions
to access the patient information and the PRS.

16

A composite use case diagram:
all interactions involving a given actor

Fig 5.5: Use cases involving Medical Receptionist

Medical
receptionist

Register
patient

Transfer data

Contact
patient

View patient
info.

Unregister
patient

5.2.2 Sequence Diagram

• Models the interactions between actors and/or
objects or components within the system in detail

• Can be used to show the sequence of interactions
in a given use case

• Diagram notes:

17

Read sequence from top to bottom: it’s chronological

objects and actors: listed across top with dotted lines going down
boxes on dotted line: lifetime of operation (in this interaction)
dotted arrows between lines from objects: interactions
annotations on arrows: calls to objects with parameters, return values
box named alt with conditions in brackets: for branching/alternatives

18

Fig 5.6: View patient information

Example of a UML Sequence diagram

P: PatientInfo

ViewInfo (PID)
report (Info, PID,
UID)

authorize (Info,
UID)

Patient info

D: MHCPMS-DB AS: Authorization

authorization

Error (no access)

[authorization OK]

[authorization fail]

Medical Receptionist

alt

A window from the user interface

PID: patient ID
UID: user ID
Info: kind of info
to be returned

Sequence Diagram Uses

• Requirements Development:
- To document/discuss requirements (especially operations)
- These diagrams must leave out detail (objects)

❖ so as not to constrain developers
- For example:

• Design/Implementation:
- Details are required:
- Messages must match objects’ methods
- Include arguments in method calls between objects
- Source of the arguments should be indicated

19

Minimal sequence diagram: only two components: user and system
Use to show sequence of interactions between user and system

5.3 Structural Models

• Display the organization of the system in terms
of its components and relationships

• Static Models
- shows the structure of the system
- or just the structure of the data

• Dynamic Models
- shows organization of system when it is executing

(processes/threads)
- (won’t be discussing these)

20

5.3.2 UML Class Diagrams

• Static model

• Shows classes and associations between them

• Uses:
- developing requirements: model real-world objects
- during design phase: add implementation objects

• Simple class diagrams:
- Box represents a class (with a name)
- Lines show associated between classes (name optional)
- Number at each end to show how many objects can be

involved in the association (multiplicity)

21 22

Two classes and one association
 (a one-to-one relationship)

Fig 5.8: UML Classes and association

Patient Patient
record

1 1

Patient Patient
record

1 1
Instructor Course

Section
1..*

Two classes and one association
 (a one-to-many relationship)

How many instructors does a Course Section have?

23

Fig 5.9: Classes and associations in the
MHC-PMS

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesruns

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

24

Fig 5.10: Consultation class, in more detail

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...

Attributes,
types optional

Operations, param +
return types optional

Note: Don’t record
associated classes here

5.3.2 Generalization
• Act of identifying commonality among concepts,

defining:
- a general concept (superclass)
- specialized concept(s) (subclasses).

• Example: University personnel
- Faculty, Staff, Students (graduate, undergrad)
- All university personnel have ID numbers
- All students have majors

• Common attributes are stored in superclass only
- avoids duplication
- changes affecting how ID number is implemented happens

in University personnel class only
25 26

Fig 5.11: Generalization hierarchy

Arrow points to superclass

Doctor

General
practitioner

Hospital
doctor

Consultant Team doctor

Trainee
doctor

Qualified
doctor

27

Fig 5.12: Generalization with added detail

Attributes + operations of
superclass also belong to

subclass objects
(they are inherited)

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ()
de-register ()

Staff #
Pager #

Practice
Address

Subclass adds more specific
attributes + operations

5.3.3 Aggregation
• When objects are composed of separate parts

- ex: a (university) class is composed of a faculty member
and several students

• UML: aggregation is a special kind of association
- diamond at end of line closest to “whole” class

• When implemented, the composite usually has
instance variables for each “part” object

28

29

Fig 5.13: Aggregation association

Patient record

Patient Consultation

11

1 1..*

Class
Section

Faculty Student

5.4 Behavioral models

• Represent dynamic behavior of the system as it is
executing

• More of an “internal” view of the system

• Sequences of Actions:
- UML Activity diagrams (flow of actions, slide 10)
- UML Sequence diagrams (sequence of interactions, slide 17)
- Data-flow diagrams (DFD)

• States of an object or system, with transitions
- UML state diagrams

30

5.4.1 Data-flow diagram

• Many systems are (were?) data-processing systems,
primarily driven by data.
- One of the first graphical software models (pre UML)

• DFD models the flow of data through a process
- collection of connected functions, each with input and output data
- shows dependencies of functions
- more functional or procedural -oriented

• Useful during requirements analysis:
- simple and intuitive, users can validate proposed system

31

Example Data Flow Diagram:
Order Processing

32

Oval: functional processing
Rectangle: data store
Labeled arrow: data input/output and movement

5.4.2 UML State diagrams
• Describes

- all the states an (object or component or system) can get into
- how state changes in response to events (transitions)

• Useful when object/component/system is changed by
events (real time and embedded systems, etc.)

• Components of a state diagram
- Rounded rectangles: system states
‣ includes what action to do in that state

- Labeled arrow: stimuli to force transition between states
‣ optional guard: transition allowed only when guard is true
‣ unlabeled arrow: transition occurs automatically when

action is complete

33

Fig 5.16
State diagram of a microwave oven

34

Diagram is missing (at least) one arrow

Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
 'Ready'

do: display
'Waiting'

Timer

Timer

5.5 Model Driven Engineering (MDE)

• Software development where models (rather than
source code) are the principal outputs of the
development process.
- Developers generate programs automatically from the models.
- Developers test and debug models rather than source code.

• Models are often extensions of UML models

• Some problems:
- Models are inherently too abstract to be a basis for the

implementation (need alternate representation)
- Not enough good tools supporting model compilation and

debugging yet.

35

