Analysis of Algorithms

An Introduction

CS 3358
Summer II 2013
Jill Seaman

Note: in this lecture "function" almost always refers to a mathematical function, as in $f(x)=x+101$

Sections 6.1, 6.2, 6.4 (optional), 6.6 (not 6.6.3)

Algorithms

- Note that two very different algorithms can solve the same problem
- bubble sort vs. quicksort
- List insert in an array-based implementation vs. a linked-list-based implementation.
- How do we know which is faster (more efficient in time)?
- Why not just run both on same data and compare?

Algorithms

- An algorithm is a clearly specified set of instructions a computer follows to solve a problem.
- An algorithm should be
- correct
- efficient: not use too much time or space
- Algorithm analysis: determining how much time and space a given algorithm will consume.2

Algorithms

- Could measure the time each one takes to execute, but that is subject to various external factors
- multitasking operating system
- speed of computer
- language solution is written in (compiler)
- Need a way to quantify the efficiency of an algorithm independently of execution platform, language, or compiler

Estimating execution time

- The amount of time it takes an algorithm to execute is a function of the input size.
- We use the number of statements executed (given a certain input size) as an approximation of the execution time.
- Count up statements executed for a program or algorithm as a function of the amount of data
- For a list of length N , it may require executing $3 \mathrm{~N}^{2}+2 \mathrm{~N}+125$ statements to sort it using a given algorithm.

Counting statements

- Each single statement (assignment, output) counts as 1 statement
- A boolean expression (in an if stmt or loop) is 1 statement
- A function call is equal to the number of statements executed by the function.
- A loop is basically the number of times the loop executes times the number of statements executed in the loop.
- usually counted in terms of N , the input size.

Comparing functions

- Is $3 N+4$ good? Is it better (less) than
$-5 N+5$?
$-N+1,000$? for all values of N ?
$-\mathrm{N}^{2}+\mathrm{N}+2$?
- Hard to say without graphing them.
- Even then, are the differences significant?
- int result = 0; (1) - result += values[i]; (N)
- int $\mathrm{i}=0$; (1) - return result; (1)
$-\mathrm{i}<$ numValues $(\mathrm{N}+1) \quad$ Total $=3 \mathrm{~N}+4$,
(N)

Comparing functions

- When comparing these functions in algorithm analysis
- We are concerned with very large values of N.
- We tend to ignore all but the "dominant" term.

At large values of $\mathrm{N}, 3 \mathrm{~N}$ dominates the 4 in $3 \mathrm{~N}+4$

- We also tend to ignore the constant factor (3).
- We want to know which function is growing faster (getting bigger for bigger values of N).

Comparing functions

- For a given function expressing the time it takes to execute a given algorithm in terms of N ,
- we ignore all but the dominant term and put it in one of the function classifications.
- Which classifications are more efficient?.
- The ones that grow more slowly.

Function classifications

- Constant	$f(x)=b$	$O(1)$
- Logarithmic	$f(x)=\log _{b}(x)$	$O(\log n)$
- Linear	$f(x)=a x+b$	$O(n)$
- Linearithmic	$f(x)=x \log _{b}(x)$	$O(n \log n)$
- Quadratic	$f(x)=a x^{2}+b x+c$	$O\left(n^{2}\right)$
- Exponential	$f(x)=b^{x}$	$O\left(2^{n}\right)$

Last column is "big Oh" notation

Comparing functions

We want small Time value for large N values

Data size (N)
12

Comparing functions

- Graph 2

Formal Definition of Big O

"Order F of N "

- $T(N)$ is $O(F(N)$) if there are positive constants c and N_{0} such that $T(N)<=c F(N)$ when $N>=N_{0}$
- N is the size of the data set the algorithm works on
- $T(N)$ is the function that characterizes the actual running time of the algorithm (like $3 \mathrm{~N}+4$)
- $F(N)$ is a function that characterizes an upper bounds on $T(N)$. It is a limit on the running time of the algorithm. (The typical Big O functions)
- c and N_{0} are constants. We pick them to make the definition work.

Comparing functions

- Assume N is 100,000, processing speed is 1,000,000,000 operations per second

Function	Running Time
2^{N}	3.2×10^{30086} years
N^{4}	3171 years
N^{3}	11.6 days
N^{2}	10 seconds
$\mathrm{N} \log \mathrm{N}$	0.0017 seconds
N	0.0001 seconds
square root of N	3.2×10^{-7} seconds
$\log \mathrm{N}$	1.2×10^{-8} seconds

Example using definition

- Given $T(N)=3 N+4$, prove it is $\mathrm{O}(\mathrm{N})$.
$-F(N)$ in the definition is N
- We need to choose constants c and N_{0} to make $\mathrm{T}(\mathrm{N})<=\mathrm{cF}(\mathrm{N})$ when $\mathrm{N}>=\mathrm{N}_{0}$ true.
- Lets try $\mathrm{c}=4$ and $\mathrm{N}_{0}=5$.
- Graph on next slide shows:
$3 \mathrm{~N}+4$ is less than 4 N whenever N is bigger than 5

Demonstrating $3 \mathrm{~N}+4$ is $\mathrm{O}(\mathrm{N})$

horizontal axis: N , number of elements in data set

Example 1:

```
bool findNum(double[] values, int numValues, double num)
{
    for(int i = 0; i < numValues; i++
        if(values[i] == num)
            return true;
    return false;
```

- $\mathrm{T}(\mathrm{N})$ is $\mathrm{O}(\mathrm{F}(\mathrm{N})$) for what function F ?
- best case?
- average case?
- worst case?

Best, Average, Worst case analyses

Because data values may affect execution time.

- Best case: fewest possible statements executed - example: linear search for first element in list.
- Average case: number of statements executed for most cases of input, or normal cases
- example: linear search for element in middle of list
- Worst case: maximum number of statements that could be executed
- example: linear search for last element in list, or an element not in list.

Example 2:

```
Matrix Matrix::add(Matrix rhs)
{ Matrix sum = new Matrix(numRows(), numCols(), 0);
    for(int row = 0; row < numRows(); row++)
        for(int col = 0; col < numCols(); col++)
            sum.myMatrix[row][col] = myMatrix[row][col]
            + rhs.myMatrix[row][col];
        return sum;
}
```

- $T(N)$ is $O(F(N))$ for what function F ?

Example 3:

public void selectionSort(double[] data, int numValues) \{ int $\mathrm{n}=$ numValues;
int min;
double temp;
for(int $i=0 ; i<n$; i++
\{ min = i;
for(int $j=i+1 ; ~ j<n ; ~ j++)$
if(data[j] < data[min])
min = j;
temp $=$ data[i];
data[i] = data[min]
data[min] = temp;
// end of outer loop, i
\}
Note: $1+2+3+\ldots+\mathrm{N}=\mathrm{N}^{*}(\mathrm{~N}+1) / 2$

- $\mathrm{T}(\mathrm{N})$ is $\mathrm{O}(\mathrm{F}(\mathrm{N}))$ for what function F ?

Example 5:

- Insert (and remove) for List_3358
- implemented using arrays (in class: see below)
- implemented using linked lists
- These operations are $\mathrm{O}\left(_\right)$?

```
void List 3358::remove() {
    assert(!atEOL() && !isEmpty())
    for (int i=cursor; i < currentSize-1; i++)
        values[i] = values[i+1];
    currentSize--;
    if (isEmpty())
        cursor = EOL;
```


Example 4:

```
public int foo(int[] list, int length){
    int total = 0;
    for(int i = 0; i < length; i++)
        total += countDups(list[i], list);
    }
return total;
}
// method countDups is O(N) where N is the
// length of the array it is passed
```

- $T(N)$ is $O(F(N))$ for what function F ?

