
1

Balanced Binary Search Trees
a.k.a AVL Trees

CS 3358
Summer II 2013

Jill Seaman

Section 19.4
2

Binary Search Trees

! Problem:
- when the nodes get too deep in the tree,

operations take longer than O(log N)
- this happens when the tree is taller than it is

wide
! Solution:

- keep the trees balanced so their height remains
(O(log N)).

3

AVL Tree:
! AVL Tree:

- A BST with the added property that for each node in
the tree, the height of the left and right subtrees
differ by at most 1

! Note: the height of an empty subtree is -1
! The balance information (height of left subtree -

height of right subtree) can be computed and
stored at each node.
- this value must be -1, 0 or 1 for each node

4

AVL Tree:
example

! (a) is an AVL tree
! (b) after inserting 1, it is not an AVL tree
! What if you insert 13? does it become balanced?

unbalanced
nodes are
darkened

5

AVL Trees

! Searching is O(log n) for AVL trees
- the height is O(log n)

! insert and remove are complicated
- they may put the tree out of balance
- must re-balance the tree before operation is

complete.

6

Rebalancing
! After insertion, only the nodes on the path from

insertion to root might have their balances
altered.

! We fix the balance of the first (deepest) node
on the path to the root, and this rebalances the
entire tree.

! Balance is restored by a tree rotation.
! A single rotation switches the roles of the

parent and child while maintaining the search
order (BST property).

7

Rebalancing
! If node X is balanced, then as a result of an insert,

X becomes unbalanced, we have only the following
possibilities for where the insert happened:
- 1. into the left subtree of the left child of X. (left-left)
- 2. into the right subtree of the left child of X. (left-right)
- 3. into the left subtree of the right child of X. (right-left)
- 4. into the right subtree of the right child of X. (right-

right)
! 1 and 4 are mirror images of each other.
! 2 and 3 are mirror images of each other.

8

Single Rotation for case 1

! k2 is now unbalanced, after insert into A
! A < value(k1) < B < value(k2) < C
! make k2 the right child of k1.
! make B the left subtree of k2

9

Example: Rotation for case 1

! k2 is unbalanced, after insert of value 1
! make k2 the right child of k1.
! make B the left subtree of k2 10

Single rotation does not fix case 2

! k2 is unbalanced, after insert into Q
! P < value(k1) < Q < value(k2) < R
! Problem: still unbalanced after single rotation!

11

Double Rotation

! k3 is unbalanced, after insert into B or C
! A < value(k1) < B < value(k2) < C < value(k3) < D
! make k1 the left child of k2, B becomes right child of k1.
! make k3 the right child of k2, C becomes left child of k3

Same case
as previous
slide, split Q
into B and C

12

Example: Rotation for case 2

! k3 is unbalanced, after insert of value 5
! make k1 the left child of k2, B becomes right child of k1.
! make k3 the right child of k2, C becomes left child of k3

C is an
empty
subtree

