Balanced Binary Search Trees
a.k.a AVL Trees

CS 3358
Summer Il 2013

Jill Seaman

Section 19.4

Binary Search Trees |

* Problem:

- when the nodes get too deep in the tree,
operations take longer than O(log N)

- this happens when the tree is taller than it is
wide
* Solution:

- keep the trees balanced so their height remains
(O(log N)).

AVL Tree:

* AVL Tree:

- ABST with the added property that for each node in
the tree, the height of the left and right subtrees
differ by at most 1

* Note: the height of an empty subtree is -1

* The balance information (height of left subtree -
height of right subtree) can be computed and
stored at each node.

- this value must be -1, 0 or 1 for each node

AVL Tree:
example | |
® ®
® @ ® O
@ ® @ @ ® @

eJO @) inbalanced

@ Garkened

(a) (b)

* (a)is an AVL tree
« (b) after inserting 1, it is not an AVL tree
* What if you insert 13?7 does it become balanced?

(—‘ AVL Trees

Searching is O(log n) for AVL trees
the height is O(log n)

insert and remove are complicated

they may put the tree out of balance

must re-balance the tree before operation is
complete.

—

If node X is balanced, then as a result of an insert,
X becomes unbalanced, we have only the following
possibilities for where the insert happened:

1. into the left subtree of the left child of X. (left-left)
2. into the right subtree of the left child of X. (left-right)
3. into the left subtree of the right child of X. (right-left)
4. into the right subtree of the right child of X. (right-
right)

1 and 4 are mirror images of each other.

2 and 3 are mirror images of each other.

Rebalancing

— .

Rebalancing

After insertion, only the nodes on the path from
insertion to root might have their balances
altered.

We fix the balance of the first (deepest) node
on the path to the root, and this rebalances the
entire tree.

Balance is restored by a tree rotation.

A single rotation switches the roles of the
parent and child while maintaining the search
order (BST property).

—

Single Rotation for case 1

(a) Before rotation (b) After rotation

k2 is now unbalanced, after insert into A

A <value(k1) < B < value(k2) < C

make k2 the right child of k1.

make B the left subtree of k2 8

Example: Rotation for case 1

Single rotation does not fix case 2

(a) Before rotation (b) After rotation

* k2 is unbalanced, after insert of value 1
* make k2 the right child of k1.
* make B the left subtree of k2 .

(a) Before rotation (b) After rotation

* k2 is unbalanced, after insert into Q
* P <value(k1) < Q <value(k2) <R
* Problem: still unbalanced after single rotation!

Double Rotation

Same case
as previous
slide, split Q
into Band C

(a) Before rotation (b) After rotation

* k3 is unbalanced, after insert into B or C

* A<value(k1) < B < value(k2) < C <value(k3) <D

* make k1 the left child of k2, B becomes right child of k1.
* make k3 the right child of k2, C becomes left chillcli of k3

Example: Rotation for case 2

Cisan
empty
subtree (b) After rotation

(a) Before rotation

* k3 is unbalanced, after insert of value 5
* make k1 the left child of k2, B becomes right child of k1.
* make k3 the right child of k2, C becomes left chilqzof k3

