Balanced Binary Search Trees

CS 3358
Summer II 2013
Jill Seaman

Section 19.4

Binary Search Trees

- Problem:
- when the nodes get too deep in the tree, operations take longer than $\mathrm{O}(\log \mathrm{N})$
- this happens when the tree is taller than it is wide
- Solution:
- keep the trees balanced so their height remains $(\mathrm{O}(\log \mathrm{N}))$.

AVL Tree:

- AVL Tree:

- A BST with the added property that for each node in the tree, the height of the left and right subtrees differ by at most 1
- Note: the height of an empty subtree is -1
- The balance information (height of left subtree height of right subtree) can be computed and stored at each node.
- this value must be $-1,0$ or 1 for each node

AVL Tree: example

(a)

(b)
unbalanced
nodes are
darkened

- (a) is an AVL tree
- (b) after inserting 1, it is not an AVL tree
- What if you insert 13 ? does it become balanced?

AVL Trees

- Searching is $O(\log n)$ for $A V L$ trees
- the height is $\mathrm{O}(\log \mathrm{n})$
- insert and remove are complicated
- they may put the tree out of balance
- must re-balance the tree before operation is complete.

Rebalancing

- If node X is balanced, then as a result of an insert, X becomes unbalanced, we have only the following possibilities for where the insert happened:
-1 . into the left subtree of the left child of X. (left-left)
-2 . into the right subtree of the left child of X. (left-right)
- 3 . into the left subtree of the right child of X. (right-left)
- 4. into the right subtree of the right child of X. (rightright)
- 1 and 4 are mirror images of each other.
- 2 and 3 are mirror images of each other.

Rebalancing

- After insertion, only the nodes on the path from insertion to root might have their balances altered.
- We fix the balance of the first (deepest) node on the path to the root, and this rebalances the entire tree.
- Balance is restored by a tree rotation.
- A single rotation switches the roles of the parent and child while maintaining the search order (BST property).

Single Rotation for case 1

- k 2 is now unbalanced, after insert into A
- A < value(k1) < B < value(k2) < C
- make k2 the right child of $k 1$.
- make B the left subtree of k2

Example: Rotation for case 1

(a) Before rotation

- k 2 is unbalanced, after insert of value 1
- make k2 the right child of k 1 .
- make B the left subtree of $k 2$

Single rotation does not fix case 2

Double Rotation

Same case as previous
slide, split Q
into B and C

- k3 is unbalanced, after insert into B or C
- A < value(k1) < B < value(k2) < C < value(k3) < D
- make $k 1$ the left child of $k 2, B$ becomes right child of $k 1$.
- make $k 3$ the right child of $k 2, C$ becomes left child of $k 3$

- $k 2$ is unbalanced, after insert into Q
- P < value(k1) < Q < value(k2) < R
- Problem: still unbalanced after single rotation!

Example: Rotation for case 2

(a) Before rotation

- k3 is unbalanced, after insert of value 5
- make k 1 the left child of $\mathrm{k} 2, \mathrm{~B}$ becomes right child of k 1 .
- make $k 3$ the right child of $k 2, C$ becomes left child of $k 3$

