
1

Exam I Review

CS 3358
Summer II 2013

Jill Seaman

2

Exam I
! Friday, July 19, 12:00pm to 1:30pm
! Derr 241 (here)
! Closed book, closed notes, clean desk
! 20% of your final grade
! I recommend using a pencil (and eraser)
! All writing will be done on the test paper I will

hand out.
! No calculators.

3

Exam Format

! 100 points total
- Writing programs/functions/code (at least 50%)
- Multiple choice
- Fill-in-the-blank/short answer
- Tracing code

✦ what is the output OR
✦ show the diagram of a linked list

- Finding errors in code (maybe)

4

Arrays, pointers, structs

! First-class vs second-class objects (types)
! Know how to use vectors

★ just the operations in the lecture slides, no iterators
! Pointers: declare, assign, use (dereference)
! Dynamic memory allocation (and deallocation)
! Structures, pointers to structures, objects (->)
! Shallow copy vs. deep copy

5

Objects and classes
! Encapsulation, Information hiding, Interface
! Class declaration

★ data members, member functions, public and private
! Default parameters, initializer list, const member

function
! The big three (defaults, when to override)

★ destructor, copy constructor, operator=
! Operator overloading
! How to separate source code into multiple files
! Know how to implement Card/Deck/Player

6

Linked Lists
! How to define a linked list

✴ Node definition (next, previous)
✴ head (tail, ...)

! Using null pointers
! Basic operations: be able to implement for single

or doubly linked list. (NumberList demo)
✴ constructor, append, insert, remove, destroy
✴ display the list, copy constructor

! Know how to draw the lists
! Arrays vs. linked lists: pros+cons

Read chapter 17 in Gaddis,
NOT in Weiss book.

7

Introduction to ADTs
! Data structure vs abstract data type (definitions)
! Commonly used ADTs (list, set, bag, map)

★ understand the operations
! Implementation vs. interface of an ADT

★ abstract and concrete parts of the implementation
! bag implementations:

★ version 1: fixed length array
★ version 2: dynamically allocated array

- how to resize a dynamic array
! List_3358 demo and PA2 (arrays and linked lists) 8

Analysis of algorithms
! Understand the concept:

approximating time it takes to execute an
algorithm by counting statements, in terms of
data size (N).

! Know the growth rate functions
✴ Which ones are faster growing than others

! For a given algorithm/function, be able to come
up with the Big O function (to say it is O(F(N)))

! Given two implementations, be able to say which
is more efficient (faster) than the other, based on
their Big O functions.

9

Objectives covered
! Write C++ programs using multiple classes and arrays of objects.
! Read and write C++ code that uses pointer variables and memory operations

(new, &, *, delete), pointers to arrays, structures, and objects and the -> operator.

! Write C++ programs with the source code separated into multiple files, using header
(.h) files.

! State the definition of an Abstract Data Type.
! Describe the semantics (values and operations) of the following ADTs : Lists, Sets,

Multi-set, Map
! Perform (demonstrate) each of the List ADT operations given an instance of the ADT.
! Summarize the advantages and disadvantages of array vs linked lists
! Implement the List (Set, Multi-set, Map) ADT in C++ using arrays and linked lists

! Write programs in C++ that use vector from the C++ Standard Template Library
! List (in order of increasing growth rate) the 6 categories of functions used in

analyzing algorithms.

! Analyze algorithms, including implementations of ADT operations, for efficiency (give
the big O function)

10

Example Programming Problem

 Given&the&class&declara/on&(provided&in&the&test)&for&a&
bag&implemented&as&a&singly9linked&list,&write&C++&code&
to&implement&member&func/ons&that&will&
a)&add&an&item&to&the&bag.
b)&return&the&number&of&occurrences&of&a&given&element&
in&the&bag.&

The class declaration will include the prototypes for the member functions.
It may or may not include the member variable definitions.

It could be a bag or a set or a list (direct access or cursor based)
or a map, and some appropriate operations.

I could ask you to implement it using an array,
a dynamic array, or a linked list

11

Example Tracing Problem
Draw a picture to depict the nodes in memory after the following
code is executed.

 struct Node {
 int data;
 Node *next;

 Node *foo;
 };

 …
 Node *hey;

 Node *temp = new Node;
 temp->data = 42;

 temp->foo = temp;
 temp->next = NULL;
 hey = temp;

 temp = new Node;

 temp->data = 13;
 temp->next = hey;

12

Example Short Answer
What is the Big O function for the insert operation in a doubly
linked list when inserting before the cursor?

I will provide the code for the operation this time

Practice: figure out the Big O functions for all
of the operations in the list implementations.

Answer would be something like: O(n) or O(1) or O(n2) ...

13

How to Study
! Review the slides

✴ understand all the concepts
! Use the book(s) to help understand the slides

✴ there will be no questions over material (or code)
that is in the book but not on the slides

! Understand the code in the demo(s)!
! Understand the programming assignments

✴ rewrite yours so they work correctly!
! Practice, practice, practice
! Get some sleep

