
1

Final Exam Review

CS 3358
Summer II 2013

Jill Seaman

2

In conclusion . . .
! The value of Abstract Data Types in computer

science:
★ reuse/modularity: ADTs can be used to solve many

different problems, want to reuse the code
★ implementation independence: the implementation

of the ADT can be changed without changing the
“drivers” (classes that use it).

★ abstraction/information hiding: the programmer can
use an ADT without having to care how its
operations are implemented.

3

ADT summaries
! lists:

★ data is ordered
★ random access or cursor-based

! sets
★ unordered data, unique values

! bags/multi-sets
★ unordered data, values not unique

! maps
★ associations between elements from different sets.

4

ADT summaries
! stacks:

★ push/pop (LIFO) in O(1)
★ reverses lists, tracks nesting, eval exprs

! queues:
★ enqueue/dequeue (FIFO) in O(1)
★ service requests in order they arrive

! hash tables (set)
★ insert, remove, find in O(1) time
★ the data is not sorted, requires extra space

5

ADT summaries
! binary search trees:

★ insert, remove, find, findMin in O(log n) to O(n) time
! AVL trees:

★ insert, remove, find, findMin in O(log n) time
★ requires re-balancing after insert/remove

! heaps
★ insert, removeMin in O(log n) time, findMin in O(1)

For each of these:
• the data is sorted, can produce a sorted list of the items
• space is used in proportion to size 6

Final Exam
! Thursday, Aug 8, 2:00pm to 4:30pm
! Derr 241 (here)
! Closed book, closed notes, clean desk
! 30% of your final grade
! I recommend using a pencil (and eraser)
! All writing will be done on the test paper I will

hand out.
! No calculators.

7

Exam Format

! 150 points total
- Writing programs/functions/code (~50%)
- Multiple choice (~15)
- Fill-in-the-blank/short answer (big O functions, etc.)
- Tracing code (what is the output),
- Demonstrating sorts or sort operations, tree

operations, heap operations
- Finding errors in code (recursive functions)

8

Arrays, pointers, structs, objects,
classes

! Know how to use vectors and strings
! Pointers, dynamic memory allocation and

deallocation
! Structures, pointers to structures
! Shallow copy vs. deep copy
! Encapsulation, Information hiding, Interface
! Class declaration
! Default parameters, initializer list, const member

function
! The big three (defaults, when to override)

9

Linked Lists
! How to define a linked list

✴ Node definition
✴ head (tail)

! Using null pointers
! Basic operations: be able to implement for single

or doubly linked list. (NumberList demo)
✴ constructor, append, insert, remove, destroy
✴ display the list, copy constructor

! Know how to draw the lists
! Arrays vs. linked lists: pros+cons 10

Introduction to ADTs
! Data structure vs abstract data type
! Commonly used ADTs (list, set, bag, map)
! Implementation vs. interface
! bag implementations

★ version 1: fixed length array
★ version 2: dynamically allocated array

- how to resize a dynamic array
! List_3358, the cursor based list (demo+PA#2)

★ be able to implement operations (array, linked list)
★ know the runtime analyses for these

11

Analysis of algorithms
! Understand the concept.
! Know the growth rate functions

✴ Which ones are faster growing than others
! For a given algorithm/function, be able to do the

runtime analysis (to say it is O(F(N)))
! Given two implementations, be able to say which

is more efficient (faster)
! I will not necessarily give you the code this time,

just a description of the algorithm.
12

Templates
! Why? What are they for?

★ Type independence, generic programming
! Templated Functions
! Templated Classes
! Be prepared to work with templated classes and

functions

13

Stack and Queue ADTs
! Know the operations, how they work

★ Stack: O(1): push, pop, isFull, isEmpty
★ Queue: O(1): enqueue, dequeue, isFull, isEmpty

! Be able to implement an array or linked list
version (singly-linked list)

! Be able to use a stack or queue to solve a
problem

! Be familiar with the sample code:
★ IntStack and intQueue with wrap (lectures)
★ Stack_3358_LL.h and Queue_3358_LL.h (website)

! Array vs Linked List implementations
14

Recursion
! How to write recursive functions

✴ Base case
✴ Recursive case (smaller caller)

! Recursion over
✴ non-negative ints
✴ lists: arrays, vectors, linked list, List_3358, substr
✴ trees: Binary search trees

! You will be asked to write at least one recursive
function.

15

Sorting
! Understand the different sorts:

✴ O(N2): selection, insertion, bubble
✴ O(N log N): merge sort, quicksort (avg)

! Know the algorithms really well
✴ Will not have to write code for an algorithm
✴ May be asked to give description in English
✴ Will be asked to show steps in the process (show

result of a pass, or a merge, or a partitioning).
! Be familiar with runtime analyses and issues

16

Hash tables
! Hash tables and (good) hash functions
! Collisions and collision resolution

✴ Linear probing
➡ Lazy deletion
➡ Primary clustering

✴ Quadratic probing
✴ Separate chaining (pros+cons)

! Rehashing: how to expand the table
! Be able to hash a list of keys given a simple

hashing function and collision strategy
✴ Like the examples in the slides

17

Trees/Binary search trees
! Definitions and terminology, examples
! Traversals: preorder, postorder, inorder
! Binary tree
! Binary search trees

✴ ordering property
✴ ops: insert, remove, find, findMin, findMax
✴ inorder traversal: sorted order

! Be able to implement the operations from PA7
! Be able to show (draw) tree after an operation

18

Balanced Trees/AVL Trees
! Understand the definition:

✴ BST where for each node in the tree, the height of
the left and right subtrees differ by at most 1

✴ be able to recognize AVL Trees, and which nodes
are unbalanced

! Insert:
✴ 4 cases where an insert happens (wrt newly

unbalanced node).
✴ using rotation to restore balance to the tree.
✴ be able to apply single rotation to case 1 insert

19

Heaps
! Understand the definition:

✴ structural property: complete binary tree
✴ ordering property: parent is smaller than children

! Array-based implementation
✴ formulas to find nodes (children: 2i, 2i+1, parent: i/2)
✴ is the node a leaf?

! Operations
✴ insert, findMin, deleteMin (percolate up and down)

! Heapsort
✴ understand the algorithm and runtime analysis 20

Example Programming Problems

 Given&the&ADT&for&the&Stack_3358&at&the&end&of&the&
exam,&implement&the&push,&pop,&isEmpty&and&isFull&
funcBons.

Given&the&ADT&for&the&BST_3358&at&the&end&of&the&exam,&
implement&the&find&and&insert&funcBons.

The class declaration would either:
a) include the private member variables or else
b) the question would state which implementation to use
and you would provide the private member variables

Know the programming assignments

21

Example Tracing Problem

• What&is&the&inorder&traversal&for&the&following&BST?
• What&would&the&following&heap&look&like&aJer&inserBng&42?
• What&would&this&BST&look&like&aJer&deleBng&42?
• What&would&this&AVL&tree&look&like&aJer&inserBng&1&(and&reQbalancing)?

A diagram containing a BST, AVL tree or heap
would be given for each question.

• List&the&comparisons&(in&the&form&"a<b")&in&the&order&that&they&
are&evaluated&when&the&merge&algorithm&is&used&on&the&following&
two&lists:

1 3 8 9 4 5 7 10

22

Example Short Answer
Give the runtime analysis Big O function for the insert operation in
a doubly linked list when inserting before the cursor.

What are the two main steps in the heapsort?
What are the main steps in quicksort? merge sort? binary
search?

I will NOT provide the code for the operation

Answer would be something like: O(n) or O(1) or O(n2) or ...

23

How to Study
! Review the slides

✴ understand all the concepts
! Use the book to help understand the slides

✴ there will be no questions over material (or code) that is
in the book but not on the slides

! Understand the code in the demo(s)
! Understand the programming assignment solutions

✴ rewrite yours so it works
! Practice, practice, practice
! Get some sleep

