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In conclusion . . .
! The value of Abstract Data Types in computer 

science:
★ reuse/modularity: ADTs can be used to solve many 

different problems, want to reuse the code
★ implementation independence: the implementation 

of the ADT can be changed without changing the 
“drivers” (classes that use it).

★ abstraction/information hiding: the programmer can 
use an ADT without having to care how its 
operations are implemented.
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ADT summaries
! lists: 

★ data is ordered
★ random access or cursor-based

! sets
★ unordered data, unique values

! bags/multi-sets
★ unordered data, values not unique

! maps
★ associations between elements from different sets.
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ADT summaries
! stacks: 

★ push/pop (LIFO) in O(1)
★ reverses lists, tracks nesting, eval exprs

! queues:
★ enqueue/dequeue (FIFO) in O(1)
★ service requests in order they arrive

! hash tables (set)
★ insert, remove, find in O(1) time
★ the data is not sorted, requires extra space
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ADT summaries
! binary search trees: 

★ insert, remove, find, findMin in O(log n) to O(n) time
! AVL trees:

★ insert, remove, find, findMin in O(log n) time
★ requires re-balancing after insert/remove

! heaps
★ insert, removeMin in O(log n) time, findMin in O(1)

For each of these:
• the data is sorted, can produce a sorted list of the items
• space is used in proportion to size 6

Final Exam
! Thursday, Aug 8, 2:00pm to 4:30pm
! Derr 241 (here)
! Closed book, closed notes, clean desk
! 30% of your final grade
! I recommend using a pencil (and eraser)
! All writing will be done on the test paper I will 

hand out.
! No calculators.
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Exam Format

! 150 points total
- Writing programs/functions/code (~50%)
- Multiple choice (~15)
- Fill-in-the-blank/short answer (big O functions, etc.)
- Tracing code (what is the output), 
- Demonstrating sorts or sort operations, tree 

operations, heap operations
- Finding errors in code (recursive functions)

8

Arrays, pointers, structs, objects, 
classes

! Know how to use vectors and strings
! Pointers, dynamic memory allocation and 

deallocation
! Structures, pointers to structures
! Shallow copy vs. deep copy
! Encapsulation, Information hiding, Interface
! Class declaration
! Default parameters, initializer list, const member 

function
! The big three (defaults, when to override)
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Linked Lists
! How to define a linked list

✴ Node definition
✴ head (tail)

! Using null pointers
! Basic operations: be able to implement for single 

or doubly linked list. (NumberList demo)
✴ constructor, append, insert, remove, destroy
✴ display the list, copy constructor

! Know how to draw the lists
! Arrays vs. linked lists: pros+cons 10

Introduction to ADTs
! Data structure vs abstract data type
! Commonly used ADTs (list, set, bag, map)
! Implementation vs. interface
! bag implementations

★ version 1: fixed length array 
★ version 2: dynamically allocated array

- how to resize a dynamic array
! List_3358, the cursor based list (demo+PA#2)

★ be able to implement operations (array, linked list) 
★ know the runtime analyses for these
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Analysis of algorithms
! Understand the concept.
! Know the growth rate functions

✴ Which ones are faster growing than others
! For a given algorithm/function, be able to do the 

runtime analysis (to say it is O(F(N)))
! Given two implementations, be able to say which 

is more efficient (faster) 
! I will not necessarily give you the code this time, 

just a description of the algorithm.
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Templates
! Why? What are they for?  

★ Type independence, generic programming
! Templated Functions
! Templated Classes
! Be prepared to work with templated classes and 

functions
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Stack and Queue ADTs
! Know the operations, how they work

★ Stack: O(1): push, pop, isFull, isEmpty
★ Queue: O(1): enqueue, dequeue, isFull, isEmpty

! Be able to implement an array or linked list 
version (singly-linked list)

! Be able to use a stack or queue to solve a 
problem

! Be familiar with the sample code:
★ IntStack and intQueue with wrap  (lectures)
★ Stack_3358_LL.h and Queue_3358_LL.h (website)

! Array vs Linked List implementations 
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Recursion
! How to write recursive functions

✴ Base case
✴ Recursive case (smaller caller)

! Recursion over
✴ non-negative ints
✴ lists: arrays, vectors, linked list, List_3358, substr
✴ trees: Binary search trees

! You will be asked to write at least one recursive 
function.
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Sorting
! Understand the different sorts:  

✴ O(N2): selection, insertion, bubble
✴ O(N log N): merge sort, quicksort (avg)

! Know the algorithms really well
✴ Will not have to write code for an algorithm
✴ May be asked to give description in English
✴ Will be asked to show steps in the process (show 

result of a pass, or a merge, or a partitioning).
! Be familiar with runtime analyses and issues
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Hash tables
! Hash tables and (good) hash functions  
! Collisions and collision resolution

✴ Linear probing
➡ Lazy deletion
➡ Primary clustering

✴ Quadratic probing 
✴ Separate chaining (pros+cons)

! Rehashing: how to expand the table
! Be able to hash a list of keys given a simple  

hashing function and collision strategy
✴ Like the examples in the slides
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Trees/Binary search trees
! Definitions and terminology, examples
! Traversals: preorder, postorder, inorder
! Binary tree
! Binary search trees

✴ ordering property
✴ ops:  insert, remove, find, findMin, findMax
✴ inorder traversal: sorted order

! Be able to implement the operations from PA7
! Be able to show (draw) tree after an operation
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Balanced Trees/AVL Trees
! Understand the definition:  

✴ BST where for each node in the tree, the height of 
the left and right subtrees differ by at most 1

✴ be able to recognize AVL Trees, and which nodes 
are unbalanced

! Insert:
✴ 4 cases where an insert happens (wrt newly 

unbalanced node).
✴ using rotation to restore balance to the tree.
✴ be able to apply single rotation to case 1 insert
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Heaps
! Understand the definition:  

✴ structural property: complete binary tree
✴ ordering property: parent is smaller than children

! Array-based implementation
✴ formulas to find nodes (children: 2i, 2i+1, parent: i/2)
✴ is the node a leaf?

! Operations
✴ insert, findMin, deleteMin (percolate up and down)

! Heapsort
✴ understand the algorithm and runtime analysis 20

Example Programming Problems

    Given&the&ADT&for&the&Stack_3358&at&the&end&of&the&
exam,&implement&the&push,&pop,&isEmpty&and&isFull&
funcBons.

Given&the&ADT&for&the&BST_3358&at&the&end&of&the&exam,&
implement&the&find&and&insert&funcBons.

The class declaration would either:
a) include the private member variables  or else
b) the question would state which implementation to use 
and you would provide the private member variables

Know the programming assignments
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Example Tracing Problem

• What&is&the&inorder&traversal&for&the&following&BST?
• What&would&the&following&heap&look&like&aJer&inserBng&42?
• What&would&this&BST&look&like&aJer&deleBng&42?
• What&would&this&AVL&tree&look&like&aJer&inserBng&1&(and&reQbalancing)?

A diagram containing a BST, AVL tree or heap 
would be given for each question.

• List&the&comparisons&(in&the&form&"a<b")&in&the&order&that&they&
are&evaluated&when&the&merge&algorithm&is&used&on&the&following&
two&lists:

1 3 8 9 4 5 7 10
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Example Short Answer
Give the runtime analysis Big O function for the insert operation in 
a doubly linked list when inserting before the cursor.

What are the two main steps in the heapsort?
What are the main steps in quicksort?  merge sort?  binary 
search?

I will NOT provide the code for the operation

Answer would be something like: O(n)  or O(1) or O(n2) or ...
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How to Study
! Review the slides

✴ understand all the concepts
! Use the book to help understand the slides

✴ there will be no questions over material (or code) that is 
in the book but not on the slides

! Understand the code in the demo(s)
! Understand the programming assignment solutions

✴ rewrite yours so it works
! Practice, practice, practice
! Get some sleep


