Heaps
Chapter 21

CS 3358
Summer | 2012

Jill Seaman

lII

Binary Heap:
structure property
« Complete binary tree: a tree that is
completely filled

- every level except the last is completely filled.

- the bottom level is filled left to right (the leaves
are as far left as possible).

Binary heap data structure

* A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)

- has an ordering property (parent value is
smaller than child values)

- NOT a Binary Search Tree!
* Used in the following applications

- Priority queue implementation: supports
enqueue and deleteMin operations in O(log N)

- Heap sort: another O(N log N) sorting algorithm.

2

Complete Binary Trees

* A complete binary tree can be easily stored in
an array

- place the root in position 1 (for convenience)

Complete Binary Trees
Properties

* The height of a complete binary tree is floor(log> N)

(floor = biggest int less than)
* In the array representation:

- put root at location 1

- use an int variable (size) to store number of nodes

- for a node at position i:
- left child at position 21
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor (i/2) (or use integer division)

(if 2i <= size, else i is leaf)

5

Heap: insert(x)

* First: add a node to tree.

- must be placed at next available location, size+1,
in order to maintain a complete tree.

* Next: maintain the ordering property:
- if X is greater than its parent: done
- else swap with parent, repeat

« Called “percolate up” or “reheap up”

* preserves ordering property

* O(log n)

Binary Heap:
ordering property
* In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).

- the minimum value of the heap is always at the root.
- findMin() is O(1)

i
@ R gy
&g » & ® ¥ ®
O®E @
(a) (b)

Figure 21.3 Two complete trees: (a) a heap; (b) not a heap.

Heap: insert(x)

14

13)
A

.9
D)

e
b @? ® :

Figure 21.7 Attempt to insert 14, creating the hole and bubbling the hole up.

65) (26) (32

(13)

14
g i O
@9 CD i
@boro OB @
Figure 21.8 g two steps required to insert 14 in the original heap

momtheZl7 8

Heap: deleteMin()

* Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated.

« First: move last element up to the root

* Next: maintain the ordering property, start with root:
- if both children are greater than the parent: done

- otherwise, swap the smaller of the two children with
the parent, repeat

+ Called “percolate down” or “reheap down”
* preserves ordering property
* O(log n)

Heap: deleteMin()

Figure 21.10 Creation of the hole at the root.

Q (D) % %
® ® ©® ®) & & ®
Sl S® d:l
Figure 21.11 The next two steps in the deleteMin operation.

(14)
WS

@
% @

O, \IB
5% e B Pl /
i

®O® 31 ®O®

Figure 21.12 The Last two steps in the deleteMin operation.

Heap: buildHeap()

* buildHeap takes a tree that does not have heap order
and establishes it.

* The algorithm works bottom-up:

- when processing a given node, its two children will
already be in heap order.

- then we can use percolate down to put the current
node in the right place, and preserve the heap order
property.

* No need to apply to leaves.
* Turns out this algorithm is O(n) (see book for proof)
* n inserts using insert(x) would be O(n log n)

11

Heap: buildHeap()

Figure 21.18 (a) After percolateDown (6); (b) after percolateDown (5).

12

Heap: buildHeap() | [Heapsort | l

* Using a heap to sort a list:
1. insert every item into a binary heap

HOOHOOOO® QIDISIVICICIC) 2. extract every item by calling deleteMin N times.
« Can make it slightly more efficient by using
buildHeap on the unsorted vector instead of using
@ B , - step 1 is O(N) if you use buildHeap
@ HOBOE - step 2: deleteMin is O(log N), and it's done N times,
® so it's O(N log N), and dominates first part.

insert N times.
Figure 21.20 (a) After percolateDown (2); (b) after percolateDown (1) 13

14

* Runtime Analysis: O(N log N)
and buildHeap terminates,

— e ——————

