
1

Heaps
Chapter 21

CS 3358
Summer I 2012

Jill Seaman

2

Binary heap data structure

! A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)
- has an ordering property (parent value is

smaller than child values)
- NOT a Binary Search Tree!

! Used in the following applications
- Priority queue implementation: supports

enqueue and deleteMin operations in O(log N)
- Heap sort: another O(N log N) sorting algorithm.

3

Binary Heap:
structure property

! Complete binary tree: a tree that is
completely filled
- every level except the last is completely filled.
- the bottom level is filled left to right (the leaves

are as far left as possible).

4

Complete Binary Trees

! A complete binary tree can be easily stored in
an array
- place the root in position 1 (for convenience)

5

Complete Binary Trees
Properties

! The height of a complete binary tree is floor(log2 N)
(floor = biggest int less than)

! In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:

- left child at position 2i (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor(i/2) (or use integer division)

6

Binary Heap:
ordering property

! In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).
- the minimum value of the heap is always at the root.
- findMin() is O(1)

! First: add a node to tree.
- must be placed at next available location, size+1,

in order to maintain a complete tree.
! Next: maintain the ordering property:

- if x is greater than its parent: done
- else swap with parent, repeat

! Called “percolate up” or “reheap up”
! preserves ordering property
! O(log n)

7

Heap: insert(x)

8

Heap: insert(x)

! Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated.

! First: move last element up to the root
! Next: maintain the ordering property, start with root:

- if both children are greater than the parent: done
- otherwise, swap the smaller of the two children with

the parent, repeat
! Called “percolate down” or “reheap down”
! preserves ordering property
! O(log n)

9

Heap: deleteMin()

10

Heap: deleteMin()

! buildHeap takes a tree that does not have heap order
and establishes it.

! The algorithm works bottom-up:
- when processing a given node, its two children will

already be in heap order.
- then we can use percolate down to put the current

node in the right place, and preserve the heap order
property.

! No need to apply to leaves.
! Turns out this algorithm is O(n) (see book for proof)
! n inserts using insert(x) would be O(n log n)

11

Heap: buildHeap()

12

Heap: buildHeap()

13

Heap: buildHeap()
! Using a heap to sort a list:

1. insert every item into a binary heap
2. extract every item by calling deleteMin N times.

! Can make it slightly more efficient by using
buildHeap on the unsorted vector instead of using
insert N times.

! Runtime Analysis: O(N log N)
- step 1 is O(N) if you use buildHeap
- step 2: deleteMin is O(log N), and it’s done N times,

so it’s O(N log N), and dominates first part.
14

Heapsort

