Recursion

Chapter 8

CS 3358
Summer II 2013
Jill Seaman

Sections 8.1-8.4, (8.5 if you can)

How can a function call itself?

- What happens when this function is called?

```
void message() {
    cout << "This is a recursive function.\n";
    message();
}
int main() {
    message();
}
```

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself

What is recursion?

How can a function call itself?

- Infinite Recursion:

This is a recursive function.

Recursive message() modified

- How about this one?

```
void message(int n) {
    if (n > 0) {
        cout << "This is a recursive function.\n";
        message(n-1);
    }
}
int main() {
    message(5);
}
```


Why use recursion?

- It is true that recursion is never required to solve a problem
- Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources

However:

- Some repetitive problems are more easily and naturally solved with recursion
- Iterative solution may be unreadable to humans

Tracing the calls

- 6 nested calls to message:
message(5):
outputs "This is a recursive function" calls message(4):
outputs "This is a recursive function" calls message(3):
outputs "This is a recursive function" calls message(2):
outputs "This is a recursive function"
calls message(1):
outputs "This is a recursive function" calls message(0):
does nothing, just returns
- depth of recursion (\#times it calls itself) $=5$.

Why use recursion?

- Recursion is the primary method of performing repetition in most functional languages.
- Implementations of functional languages are designed to process recursion efficiently
- Iterative constructs that are added to many functional languages often don't fit well in the functional context.
- Once programmers adapt to solving problems using recursion, the code produced is generally shorter, more elegant, easier to read and debug.

How to write recursive functions

- Branching is required (If or switch)
- Find a base case
- one (or more) values for which the result of the function is known (no repetition required to solve it)
- no recursive call is allowed here
- Develop the recursive case
- For a given argument (say n), assume the function works for a smaller value ($\mathrm{n}-1$).
- Use the result of calling the function on $\mathrm{n}-1$ to form a solution for n

Recursive function example factorial

- Mathematical definition of $n!$ (factorial of n)
if $\mathrm{n}=0$ then
if $n>0$ then $n!=1 \times 2 \times 3 \times \ldots x(n-1) \times n$
- What is the base case?
- If we assume ($\mathrm{n}-1$)! can be computed, how can we get n ! from that?

Recursive function example factorial

- Mathematical definition of n ! (factorial of n)
if $n=0$ then $n!=1$
if $n>0$ then $n!=1 \times 2 x 3 x \ldots x n$
-What is the base case?
- $\mathrm{n}=0$ (result is 1)
- If we assume ($\mathrm{n}-1$)! can be computed, how can we get n ! from that?
$-n!=n$ * $(n-1)$!

```
            Recursive function example
                factorial
int factorial(int n) {
    if ( }\textrm{n}==0\mathrm{ )
        return 1;
    else
        return n * factorial(n-1);
}
int main() {
    int number;
    cout << "Enter a number ";
    cin >> number;
    cout << "The factorial of " << number << " is "
<< factorial(number) << endl;
}
```


Tracing the calls

- Calls to factorial:

factorial(4):

return 4 * factorial(3);
calls factorial(3):
return 3 * factorial(2);
calls factorial(2):
return 2 * factorial(1);
calls factorial(1):
return 1 * factorial(0);
calls factorial(0):
return 1;

- each return statement must wait for the result of the recursive call to compute its result

Tracing the calls

Calls to factorial:

```
```

factorial(4):

```
```

factorial(4):
return 4 * factorial(3); =4 * 6 = 24
return 4 * factorial(3); =4 * 6 = 24
return 4 * factorial(3); =4 * 6 = 24
return 4 * factorial(3); =4 * 6 = 24
return 3 * factorial(2); =3*2=6
return 3 * factorial(2); =3*2=6
calls factorial(2):
calls factorial(2):
return 2 * factorial(1); =2*1=2
return 2 * factorial(1); =2*1=2
calls factorial(1):
calls factorial(1):
return 1 * factorial(0); =1*1=1
return 1 * factorial(0); =1*1=1
calls factorial(0):
calls factorial(0):
return 1;

```
```

 return 1;
    ```
```

Every call except the last makes a recursive call

- Each call makes the argument smaller
- Calls to factorial:

Recursive functions over ints

- Many recursive functions (over integers) look like this:

$$
\left.\begin{array}{|lll}
\text { type } f(\text { int } n) & \{ \\
\text { if }(n==0) \\
& / / \text { do the base case } \\
\text { else } & & \\
& / / & \ldots \\
\} & f(n-1) & \ldots
\end{array} \right\rvert\,
$$

Recursive functions over lists

- You can write recursive functions over lists using the length of the list instead of n
- base case: length=0 ==> empty list
- recursive case: assume f works for list of length n-1, what is the answer for a list with one more element?
- We will do examples with:
- arrays
- vectors
- linked lists
- strings

Recursive function example

sum of the list

- Recursive function to compute sum of a list of numbers
- What is the base case?

```
- length=0 (empty list) sum = 0
```

- If we assume we can sum the first $\mathrm{n}-1$ items in the list, how can we get the sum of the whole list from that?
- sum (list) = sum (list[0..n-2]) + list[n-1]

Assume I am given the answer to this

Recursive function example

sum of a list: vector

| ```int sum(vector<int> v) { if (v.size()==0) return 0; else { int x = v.back(); v.pop_back(); return x + sum(v); }``` | ```int main () { vector<int> x; x.push_back(10); x.push_back(20); x.push_back(30); cout << "sum "<< sum(x) << endl; cout << "size "<< x.size()<< endl;``` |
| :---: | :---: |
| \} v.back() returns the last element | |

- v.pop_back() creates the shorter vector
- Aren't we changing x each time (size $=0$ at end)?
- No (why not?)
- But something else bad is happening each time.

Recursive function example
 sum of a list: array

int sum(int a[], int size) \{ //size is number of elems if (size==0)
return 0;
else
return sum(a,size-1) $+a[s i z e-1] ;$
\}
call sum on first $\mathrm{n}-1$ elements The last element
For a list with size $=4: \operatorname{sum}(a, 4)$
$\operatorname{sum}(a, 3)+a[3]=$
$\operatorname{sum}(a, 2)+a[2]+a[3]=$
$\operatorname{sum}(a, 1)+a[1]+a[2]+a[3]=$
$\operatorname{sum}(a, 0)+a[0]+a[1]+a[2]+a[3]=$
$0+a[0]+a[1]+a[2]+a[3]$

Recursive function example

sum of a list: vector

```
int sum(vector<int> v)
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sum(v);
    }
}
int main () {
    vector<int> x;
    x.push_back(10);
    x.push_back(20);
    x.push_back(30);
cout << "sum "<< sum(x) << endl;
cout << "size "<< x.size()<< endl;
}
```

- Aren't we changing x each time (size $=0$ at end)?
- No (why not?) Pass by value $==>$ vis a copy of x, so x is unchanged

But something else bad is happening each time.
Pass by value $==>v$ makes a copy of x, for EACH recursive call

Recursive function example

sum of a list: vector without copying

```
int sumRec(vector<int> & v) { Use pass by reference
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sumRec(v);
    }
}
int sum (const vector<int> & v) {
    vector<int> x (v); //make ONE copy only
    return sumRec(x)
}
```

- Sometimes an auxiliary or driver function is needed to set things up before starting recursion.

Summary of the list examples

- How to determine empty list, single element, and the shorter list to perform recursion on.

| | Array | Vector | Linked list
 p points to first node |
| :--- | :--- | :--- | :--- |
| Base case | size==0 | v.size()==0 | p==NULL |
| last(or first)
 element | a size-1] | v.back() | p->value |
| shorter list
 (recursive call) | use size-1 | v.pop_back()* | p->next |

Recursive function example

sum of a list: linked list

- Add a sum function to List_3358_LL.h

```
// this is the public one
int List_3358::sum() {
        return sumNodes(head);
}
// this one is private Noses(p) will sum then
int List_3358::sumNodes(Node *p) { p points to until the end
    if (p==NULL)
        return 0;
    else {
        int x = p->value;
        return x + sumNodes(p->next);
    }
                                    advances p to next Node,
                                    (makes the shorter list)

\section*{Recursive function example}
count character occurrences in a string
- Recursive function to count the number of times a specific character appears in a string
- We will use the string member function substr to make a smaller string
- str.substr (int pos, int length);
- pos is the starting position in str
- length is the number of characters in the result
string \(\mathrm{x}=\) "hello there";
cout << s.subst(3,5)
lo th

\section*{Recursive function example}
count character occurrences in a string
```

int numChars(char target, string str) {
if (str.empty()) {
return 0;
} else {
int result = numChars(search, str.substr(1,str.size()))
if (str[0]==target)
return 1+result;
else
return result;
}
}
int main() {
string a = "hello";
cout << a << numChars('l',a) << endl;
}

```

\section*{Three required properties}
of recursive functions
- A Base case
- a non-recursive branch of the function body.
- must return the correct result for the base case
- Smaller caller
each recursive call must pass a smaller version of the current argument.
- Recursive case
- assuming the recursive call works correctly, the code must produce the correct answer for the current argument.

\section*{Recursive function example}
greatest common divisor
- Code
- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers without a remainder
- This is a variant of Euclid's algorithm:
```

gcd}(x,y)=y if y divides x evenly, otherwise:
gcd}(x,y)=\operatorname{gcd}(y,remainder of x/y), or gcd(y,x%y) in c+

```
- It's a recursive definition
- If \(x<y\), then \(x \% y\) is \(x(\operatorname{sogcd}(x, y)=\operatorname{gcd}(y, x))\)
- This moves the larger number to the first position.
```

int gcd(int x, int y) {
cout << "gcd called with " << x << " and " << y << endl;
if (x % y == 0) {
return y;
} else {
return gcd(y, x % y);
}
}
int main() {
cout << "GCD(9,1): " << gcd(9,1) << endl;
cout << "GCD(1,9): " << gcd(1,9) << endl;
cout << "GCD(9,2): " << gcd(9,2) << endl;
cout << "GCD(70,25): " << gcd(70,25) << endl;
cout << "GCD(25,70): " << gcd(25,70) << endl;
}

Recursive function example

greatest common divisor

- Output:
gcd called with 9 and 1
$\operatorname{GCD}(9,1): 1$
gcd called with 1 and 9
gcd called with 9 and 1
$\operatorname{GCD}(1,9): 1$
gcd called with 9 and 2
gcd called with 2 and 1
GCD(9,2): 1
gcd called with 70 and 25
gcd called with 25 and 20
gcd called with 20 and 5
$\operatorname{GCD}(70,25): 5$
gcd called with 25 and 70
gcd called with 70 and 25
gcd called with 25 and 20
gcd called with 20 and 5
$\operatorname{GCD}(25,70): 5$

Recursive function example
 Fibonacci numbers

- Series of Fibonacci numbers:
$0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots$
- Starts with 0,1 . Then each number is the sum of the two previous numbers
$\mathrm{F}_{0}=0$
$\mathrm{F}_{1}=1$
$F_{i}=F_{i-1}+F_{i-2} \quad($ for $i>1)$
- It's a recursive definition

Recursive function example

Fibonacci numbers

- Code:

```
int fib(int x) {
    if (x<=1
        return x;
    else
        return fib(x-1) + fib(x-2)
}
int main() {
    cout << "The first 13 fibonacci numbers: " << endl;
    for (int i=0; i<13; i++)
    cout << fib(i) << " ";
    cout << endl;
}
```


Recursive function example
 Fibonacci numbers

- Modified code to count the number of calls to fib:

```
int fib(int x, int &count) {
    count++;
    if ( }x<=1\mathrm{ )
        return x;
    else
        return fib(x-1, count) + fib(x-2, count)
}
int main() {
    cout << "The first 40 fibonacci numbers: " << endl;
    for (int i=0; i<40; i++) {
        int count = 0;
        int x = fib(i,count)
        cout << "fib (" << i << ")= " << x
    }
\}

\section*{Recursive function example}

Fibonacci numbers
- Counting calls to fib: output

The first 40 fibonacci numbers:
fib ( 0 ) = 0 \# of recursive calls to fib \(=1\)
fib (1)= 1 \# of recursive calls to fib =
fib (2)= 1 \# of recursive calls to fib \(=3\)
fib (3)= 2 \# of recursive calls to fib \(=5\)
fib \((4)=3\) \# of recursive calls to fib \(=9\)
fib (5) \(=5\) \# of recursive calls to \(\mathrm{fib}=15\)
fib (6)= 8 \# of recursive calls to fib \(=25\)
fib (7)= 13 \# of recursive calls to fib \(=41\)
fib (8) \(=21\) \# of recursive calls to fib \(=67\)
fib \((9)=34 \quad\) \# of recursive calls to \(\mathrm{fib}=109\)
fib \((10)=55\) \# of recursive calls to fib \(=177\)
fib (11)= 89 \# of recursive calls to fib \(=287\)
fib (12)= 144 \# of recursive calls to fib \(=465\)
fib (13)= 233 \# of recursive calls to fib \(=753\)
fib \((40)=102,334,155\) \# of recursive calls to fib \(=331,160,281\)

\section*{Recursive function example}

Fibonacci numbers
- Trace of the recursive calls for fib(5)


\section*{Recursive function example \\ Fibonacci numbers}
- Why are there so many calls to fib?
fib(n) calls fib(n-1) and fib(n-2)
- Say it computes fib(n-2) first.
- When it computes fib( \(n-1\) ), it computes fib( \(n-2\) ) again
fib(n-1) calls fib((n-1)-1) and fib((n-1)-2)
\[
=\mathrm{fib}(\mathrm{n}-2) \quad \text { and } \mathrm{fib}(\mathrm{n}-3)
\]
- It's not just double the work. It's double the work for each recursive call.
- Each recursive call does more and more redundant work

\section*{Recursive function example}

Fibonacci numbers
- The number of recursive calls is
- larger than the Fibonacci number we are trying to compute
- exponential, in terms of \(n\)
- Never solve the same instance of a problem in separate recursive calls.
- make sure \(f(m)\) is called only once for a given \(m\)

\section*{Binary Search}
- Find an item in a list, return the index or -1
- Works only for SORTED lists
- Compare target value to middle element in list.
- if equal, then return index
- if less than middle elem, search in first half
- if greater than middle elem, search in last half
- If search list is narrowed down to 0 elements, return -1
- Divide and conquer style algorithm

\section*{Binary Search \\ Example}

The target of your search is 42 . Given the following list of integers, record the values of first, last, and middle during a binary search. Assume the following numbers are in an array.

178142042556778101112122170179190

Repeat the exercise with a target of 82

\section*{Binary Search}

Iterative version
int binarySearch(const int array[], int size, int value)
\{
```

int first = 0, // First array element
last = size - 1, // Last array element
middle, // Mid point of search
position = -1; // Position of search value
bool found = false; // Flag
while (!found \&\& first <= last) {
middle = (first + last) / 2; // Calculate mid point
if (array[middle] == value) { // If value is found at mid
found = true;
position = middle;
}
else if (array[middle] > value) // If value is in lower half
last = middle - 1;
else
first = middle + 1;
}
return position;

```

38

\section*{Binary Search}

Recursive version
- Convert the iterative version to recursive
- What is the base case?
- empty list: result = -1 (not found)
- What is the recursive case?
- split list into: middle value, first half, last half
- if middle value equals target, then return its index
- if less than middle elem, search in first half \({ }^{\text {two recurrive }}\)
- if greater than middle elem, search in last half
- Need to add parameters for first and last index of the current subpart of the list to search.

\section*{Binary Search}

Recursive version
int binarySearchRec(const int array[], int first, int last, int value) i
int middle; // Mid point of search
if (first > last)
//check for empty list return -1;
middle \(=\) (first + last)/2; //compute middle index
if (array[middle]==value) return middle;
if (value < array[middle]) //recursion
return binarySearchRec(array, first,middle-1, value);
else
return binarySearchRec(array, middle+1,last, value);
\}
int binarySearch(const int array[], int size, int value) \{
return binarySearchRec(array, 0, size-1, value);

\section*{Binary Search}

Running time efficiency
- How many steps does it take to double 1 and get to \(N\) ?
\[
2^{k}=\mathrm{N}
\]
- How do we solve that for \(k\) ?
- Definition of logarithm (see math textbook):
\[
\log _{\mathrm{B}} N=k \text { if } B^{k}=N \quad \text { The logarithm is the exponent }
\]
- So solving for \(\mathrm{k}: \quad \mathrm{k}=\log _{2} \mathrm{~N}\)

\section*{Binary Search \\ Running time efficiency}
- What is the Big-O analysis of the running time?
- \(N\) is the length of the list to search
- Worst case: keep dividing \(N\) by 2 until it is less than 1.
- This is equivalent to doubling 1 until it gets to N .
```

1*2 = 2
2*2 = 4
4*2=8
8*2=16
16*2 = 32
32*2 = 64

Binary Search
 Running time efficiency

- How many steps does it take to repeatedly double 1 and get to N ?
$\log _{2} \mathrm{~N}$
- How many steps does it take to repeatedly divide N by 2 and get to 1 ?
$\log _{2} \mathrm{~N}$
- Since (worst case) binary search repeatedly divides the length of the list by 2 , until it gets down to one, its running time is

