Recursion Chapter 8

CS 3358 Summer II 2013

Jill Seaman

Sections 8.1-8.4, (8.5 if you can)

What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself

2

How can a function call itself?

What happens when this function is called?

```
void message() {
   cout << "This is a recursive function.\n";
   message();
}
int main() {
   message();
}</pre>
```

How can a function call itself?

Infinite Recursion:

```
This is a recursive function.
```

Recursive message() modified

How about this one?

```
void message(int n) {
   if (n > 0) {
      cout << "This is a recursive function.\n";
      message(n-1);
   }
} int main() {
   message(5);
}</pre>
```

5

Why use recursion?

- It is true that recursion is never required to solve a problem
 - Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call
 return mechanism uses extra resources

However:

- Some repetitive problems are more easily and naturally solved with recursion
 - Iterative solution may be unreadable to humans

Tracing the calls

6 nested calls to message:

```
message(5):
  outputs "This is a recursive function"
  calls message(4):
    outputs "This is a recursive function"
    calls message(3):
      outputs "This is a recursive function"
      calls message(2):
        outputs "This is a recursive function"
      calls message(1):
        outputs "This is a recursive function"
      calls message(1):
        outputs "This is a recursive function"
      calls message(0):
        does nothing, just returns
```

• depth of recursion (#times it calls itself) = 5⁶

Why use recursion?

- Recursion is the primary method of performing repetition in most functional languages.
 - Implementations of functional languages are designed to process recursion efficiently
 - Iterative constructs that are added to many functional languages often don't fit well in the functional context.
- Once programmers adapt to solving problems using recursion, the code produced is generally shorter, more elegant, easier to read and debug.

How to write recursive functions

- Branching is required (If or switch)
- Find a base case
 - one (or more) values for which the result of the function is known (no repetition required to solve it)
 - no recursive call is allowed here
- Develop the recursive case
 - For a given argument (say n), assume the function works for a smaller value (n-1).
 - Use the result of calling the function on n-1 to form a solution for n

Recursive function example

Mathematical definition of n! (factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n
```

- What is the base case?
- If we assume (n-1)! can be computed, how can we get n! from that?

10

Recursive function example

Mathematical definition of n! (factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 \times 2 \times 3 \times ... \times n
```

- What is the base case?
 - n=0 (result is 1)
- If we assume (n-1)! can be computed, how can we get n! from that?

```
- n! = n * (n-1)!
```

Recursive function example factorial

```
int factorial(int n) {
   if (n==0)
      return 1;
   else
      return n * factorial(n-1);
}

int main() {
   int number;
   cout << "Enter a number ";
   cin >> number;
   cout << "The factorial of " << number << " is "
      << factorial(number) << endl;
}</pre>
```

Tracing the calls

Calls to factorial:

```
factorial(4):
    return 4 * factorial(3);
    calls factorial(3):
    return 3 * factorial(2);
    calls factorial(2):
        return 2 * factorial(1);
        calls factorial(1):
        return 1 * factorial(0);
        calls factorial(0):
        return 1;
```

 each return statement must wait for the result of the recursive call to compute its result

Tracing the calls

Calls to factorial:

- Every call except the last makes a recursive call
- Each call makes the argument smaller

14

Recursive functions over ints

 Many recursive functions (over integers) look like this:

```
type f(int n) {
   if (n==0)
      //do the base case
   else
      // ... f(n-1) ...
}
```

Recursive functions over lists

- You can write recursive functions over lists using the length of the list instead of n
 - base case: length=0 ==> empty list
 - recursive case: assume f works for list of length n-1, what is the answer for a list with one more element?
- We will do examples with:
 - arrays
 - vectors
 - linked lists
 - strings

sum of the list

- Recursive function to compute sum of a list of numbers
- What is the base case?
 - length=0 (empty list) sum = 0
- If we assume we can sum the first n-1 items in the list, how can we get the sum of the whole list from that?

```
- sum (list) = sum (list[0..n-2]) + list[n-1]

Assume I am given the answer to this
```

17

Recursive function example sum of a list: array

18

Recursive function example

sum of a list: vector

- v.pop_back() creates the shorter vector
- Aren't we changing x each time (size = 0 at end)?
 - No (why not?)
 - But something else bad is happening each time.

Recursive function example

sum of a list: vector

```
int sum(vector<int> v) {
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sum(v);
    }
}
int main () {
    vector<int> x;
    x.push_back(10);
    x.push_back(20);
    x.push_back(30);
    cout << "sum "<< sum(x) << endl;
    cout << "size "<< x.size()<< endl;
}
</pre>
```

- Aren't we changing x each time (size = 0 at end)?
 - No (why not?) Pass by value ==> v is a copy of x, so x is unchanged
 - But something else bad is happening each time.

Pass by value ==> v makes a copy of x, for EACH recursive call

sum of a list: vector without copying

```
int sumRec(vector<int> & v) {
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sumRec(v);
    }
}
int sum (const vector<int> & v) {
    vector<int> x (v); //make ONE copy only
    return sumRec(x);
}
```

 Sometimes an auxiliary or driver function is needed to set things up before starting recursion.

Recursive function example

sum of a list: linked list

Add a sum function to List_3358_LL.h

```
// this is the public one
int List 3358::sum() {
   return sumNodes(head);
                                          sumNodes(p) will sum the
// this one is private
                                          Nodes starting with the one
                                          p points to until the end
int List_3358::sumNodes(Node *p) {
                                          of the list (NULL)
   if (p==NULL)
      return 0;
   else {
      int x = p->value;
      return x + sumNodes(p->next);
                              advances p to next Node.
                              (makes the shorter list)
```

Summary of the list examples

• How to determine empty list, single element, and the shorter list to perform recursion on.

	Array	Vector	Linked list p points to first node
Base case	size==0	v.size()==0	p==NULL
last(or first) element	a[size-1]	v.back()	p->value
shorter list (recursive call)	use size-1	v.pop_back()*	p->next

*may need to copy original vector

Recursive function example

count character occurrences in a string

- Recursive function to count the number of times a specific character appears in a string
- We will use the string member function substr to make a smaller string
 - str.substr (int pos, int length);
 - pos is the starting position in str
 - length is the number of characters in the result

```
string x = "hello there";
cout << s.substr(3,5);
loth</pre>
```

count character occurrences in a string

```
int numChars(char target, string str) {
    if (str.empty()) {
        return 0;
    } else {
        int result = numChars(search, str.substr(1,str.size()));
        if (str[0]==target)
            return 1+result;
        else
            return result;
    }
}
int main() {
    string a = "hello";
    cout << a << numChars('l',a) << endl;
}</pre>
```

Three required properties

of recursive functions

- A Base case
 - a non-recursive branch of the function body.
 - must return the correct result for the base case
- Smaller caller
 - each recursive call must pass a smaller version of the current argument.
- Recursive case
 - assuming the recursive call works correctly, the code must produce the correct answer for the current argument.

Recursive function example

greatest common divisor

- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers without a remainder
- This is a variant of Euclid's algorithm:

```
gcd(x,y) = y if y divides x evenly, otherwise:

gcd(x,y) = gcd(y,remainder of x/y), or gcd(y,x%y) in c++
```

- It's a recursive definition
- If x < y, then x%y is x (so gcd(x,y) = gcd(y,x))
- This moves the larger number to the first position.

Recursive function example

greatest common divisor

• Code:

```
int gcd(int x, int y) {
    cout << "gcd called with " << x << " and " << y << endl;
    if (x % y == 0) {
        return y;
    } else {
        return gcd(y, x % y);
    }
}
int main() {
    cout << "GCD(9,1): " << gcd(9,1) << endl;
    cout << "GCD(1,9): " << gcd(1,9) << endl;
    cout << "GCD(9,2): " << gcd(9,2) << endl;
    cout << "GCD(70,25): " << gcd(70,25) << endl;
    cout << "GCD(25,70): " << gcd(25,70) << endl;
}</pre>
```

greatest common divisor

Output:

```
gcd called with 9 and 1
GCD(9,1): 1
gcd called with 1 and 9
gcd called with 9 and 1
GCD(1,9): 1
gcd called with 9 and 2
gcd called with 2 and 1
GCD(9,2): 1
gcd called with 70 and 25
gcd called with 25 and 20
gcd called with 20 and 5
GCD(70,25): 5
gcd called with 25 and 70
gcd called with 70 and 25
gcd called with 25 and 20
gcd called with 20 and 5
GCD(25,70): 5
```

Recursive function example

Fibonacci numbers

Series of Fibonacci numbers:

```
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
```

 Starts with 0, 1. Then each number is the sum of the two previous numbers

```
F_0 = 0

F_1 = 1

F_i = F_{i-1} + F_{i-2} (for i > 1)
```

It's a recursive definition

30

Recursive function example

Fibonacci numbers

• Code:

```
int fib(int x) {
    if (x<=1)
        return x;
    else
        return fib(x-1) + fib(x-2);
}
int main() {
    cout << "The first 13 fibonacci numbers: " << endl;
    for (int i=0; i<13; i++)
        cout << fib(i) << " ";
    cout << endl;
}</pre>
```

The first 13 fibonacci numbers: 0 1 1 2 3 5 8 13 21 34 55 89 144

31

Recursive function example

Fibonacci numbers

Modified code to count the number of calls to fib:

Fibonacci numbers

Counting calls to fib: output

```
The first 40 fibonacci numbers:
fib (0) = 0 # of recursive calls to fib = 1
fib (1)= 1 # of recursive calls to fib = 1
fib (2)= 1 # of recursive calls to fib = 3
fib (3) = 2 # of recursive calls to fib = 5
fib (4) = 3 # of recursive calls to fib = 9
fib (5)= 5 # of recursive calls to fib = 15
fib (6)= 8 # of recursive calls to fib = 25
fib (7)= 13 # of recursive calls to fib = 41
fib (8)= 21 # of recursive calls to fib = 67
fib (9)= 34 # of recursive calls to fib = 109
fib (10) = 55 # of recursive calls to fib = 177
fib (11) = 89 # of recursive calls to fib = 287
fib (12)= 144 # of recursive calls to fib = 465
fib (13) = 233 # of recursive calls to fib = 753
fib (40) = 102,334,155 # of recursive calls to fib = 331.160.281
```

Recursive function example

Fibonacci numbers

Why are there so many calls to fib?

```
fib(n) calls fib(n-1) and fib(n-2)
```

- Say it computes fib(n-2) first.
- When it computes fib(n-1), it computes fib(n-2) **again**

```
fib(n-1) calls fib((n-1)-1) and fib((n-1)-2)
= fib(n-2) and fib (n-3)
```

- It's not just double the work. It's double the work for each recursive call.
- Each recursive call does more and more redundant work

Recursive function example

Fibonacci numbers

• Trace of the recursive calls for fib(5)

Recursive function example

Fibonacci numbers

- The number of recursive calls is
 - larger than the Fibonacci number we are trying to compute
 - exponential, in terms of n
- Never solve the same instance of a problem in separate recursive calls.
 - make sure f(m) is called only once for a given m

Binary Search

- Find an item in a list, return the index or -1
- Works only for SORTED lists
- Compare target value to middle element in list.
 - if equal, then return index
 - if less than middle elem, search in first half
 - if greater than middle elem, search in last half
- If search list is narrowed down to 0 elements, return -1
- · Divide and conquer style algorithm

37

Binary Search Example

The target of your search is 42. Given the following list of integers, record the values of first, last, and middle during a binary search. Assume the following numbers are in an array.

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

Repeat the exercise with a target of 82

Binary Search

Iterative version

```
int binarySearch(const int array[], int size, int value)
                          // First array element
    int first = 0,
   last = size - 1,
                          // Last array element
                          // Mid point of search
   position = -1;
                          // Position of search value
   bool found = false:
   while (!found && first <= last) {
       middle = (first + last) / 2;
                                         // Calculate mid point
       if (array[middle] == value) {
                                         // If value is found at mid
           found = true;
           position = middle;
       else if (array[middle] > value) // If value is in lower half
           last = middle - 1;
                                         // If value is in upper half
           first = middle + 1;
    return position;
```

Binary Search

Recursive version

- Convert the iterative version to recursive
- What is the base case?
 - empty list: result = -1 (not found)
- two base cases
- What is the recursive case?
 - split list into: middle value, first half, last half
 - if middle value equals target, then return its index
 - if less than middle elem, search in first half

two recursive

- if greater than middle elem, search in last half
- Need to add parameters for first and last index of the current subpart of the list to search.

Binary Search

Recursive version

Binary Search

Running time efficiency

- What is the Big-O analysis of the running time?
- N is the length of the list to search
- Worst case: keep dividing N by 2 until it is less than 1.
- This is equivalent to doubling 1 until it gets to N.

```
1*2 = 2

2*2 = 4

4*2 = 8

8*2 = 16

16*2 = 32

32*2 = 64 After k steps we have 2^k
```

Binary Search

Running time efficiency

 How many steps does it take to double 1 and get to N?

$$2^k = N$$

- How do we solve that for k?
- Definition of logarithm (see math textbook):

$$log_B N = k$$
 if $B^k = N$ The logarithm is the exponent

• So solving for k: k = log₂N

Binary Search

Running time efficiency

 How many steps does it take to repeatedly double 1 and get to N?

 log_2N

 How many steps does it take to repeatedly divide N by 2 and get to 1?

 log_2N

 Since (worst case) binary search repeatedly divides the length of the list by 2, until it gets down to one, its running time is

O(log N)