
1

Ch 14: More About Classes

CS 2308
Fall 2013

Jill Seaman

2

14.1 Instance and Static Members
! instance variable: a member variable in a class.

Each object (instance) has its own copy.

! static variable: one variable shared among all
objects of a class

! static member function:
- can be used to access static member variable;
‣ normal functions can access static member variables, too

- but it cannot access instance variables
- can be called before any objects are defined

3

Tree class declaration
// Tree class
class Tree {
 private:
 static int objectCount;
 public:
 Tree();
 int getObjectCount();
};

// Definition of the static member variable, written
// outside the class.
int Tree::objectCount = 0;

// Member functions defined
Tree::Tree() {
 objectCount++;
}
int Tree::getObjectCount() {
 return objectCount;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Static member variable
declared here

Static variable is incremented
each time Tree is constructed.

Static member variable
defined here (required)

4

Program demo of static variable

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include <iostream>
using namespace std;
#include "Tree.h"

int main() {
 Tree oak;
 Tree elm;
 Tree pine;

 cout << “We have “ << pine.getObjectCount()
 << “Trees in our program.\n”;

}

What will be the output?

5

Three Instances of the Tree Class,
But Only One objectCount Variable

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

6

static member function

! Declared with static before return type:

! Static member functions can access static
member data only

! Can be called independently of objects (use
class name):

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

static int getObjectCount();

cout << “We have “ << Tree::getObjectCount()
 << “Trees in our program.\n”;

static int getObjectCount();

int Tree::getObjectCount() {
 return objectCount;
}

Don’t need static
keyword here.

Put in the class
declaration

7

14.3 Member-wise Assignment
! Can use = to

- assign (copy) one object to another, or
- initialize an object with another object’s data

! Copies member to member. e.g.,

means: copy all member values from instance1
and assign to the corresponding member
variables of instance2

! Also used at initialization:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

instance2 = instance1;

Time t2 = t1;

Just like = for structs

8

Member-wise assignment: demo

Time t1(10, 20);
Time t2(12, 40);

cout << “t1: “ << t1.display() << endl;
cout << “t2: “ << t2.display() << endl;

t2 = t1;

cout << “t1: “ << t1.display() << endl;
cout << “t2: “ << t2.display() << endl;

Output:
t1: 10:20
t2: 12:40
t1: 10:20
t2: 10:20

t2 = t1; //equivalent to:
t2.hour = t1.hour;
t2.minute = t1.minute;

9

14.4 Copy Constructors

! Special constructor used when a newly created
object is initialized using another object of the
same class.

- [used implicitly when passing arguments by value]
! The default copy constructor copies field-to-field

(member-wise assignment).
! Default copy constructor works fine in many

cases

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Time t1;
Time t2 (t1);
Time t3 = t1;

Both of the last two
use the copy constructor

10

IntCell declaration

! Problem: what if the object contains a pointer?

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class IntCell
{
 private:
 int *storedValue; //ptr to int

 public:
 IntCell (int initialValue);
 ~IntCell();
 int read () const;
 void write (int x);
};

11

IntCell Implementation

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include “IntCell.h”

IntCell::IntCell (int initialValue) {
 storedValue = new int;
 *storedValue = initialValue;
}

IntCell::~IntCell() {
 delete storedValue;
}

int IntCell::read () const {
 return *storedValue;
}

void IntCell::write (int x) {
 *storedValue = x;
}

12

Problem with member-wise
assignment

! What we get from member-wise assignment in
objects containing dynamic memory (ptrs):

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell object1(5);
IntCell object2 = object1; // calls copy constructor

 //object2.storedValue=object1.storedValue

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

What is output? 5
13 or

13
13

13

Problem with member-wise
assignment

! Why are they both changed to 13?
! Member-wise assignment does a shallow copy.

It copies the pointer’s address instead of
allocating new memory and copying

! As a result, both objects point to the same
location in memory

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

object1 object2

storedValue storedValue

13

14

Programmer-Defined
Copy Constructor

! Prototype and definition of copy constructor:

! Copy constructor takes a reference parameter to
an object of the class
- otherwise, pass-by-value would use the copy

constructor to initialize the obj parameter, which
would call the copy constructor: this is an infinite loop

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell::IntCell(const IntCell &obj) {
 storedValue = new int;
 *storedValue = obj.read(); //or *(obj.storedValue)
}

static int getObjectCount();

IntCell(const IntCell &obj); Add to class declaration

15

Programmer-Defined
Copy Constructor

! Each object now points to separate dynamic
memory:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell object1(5);
IntCell object2 = object1; //now calls MY copy constr

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

object1 object2

storedValue

135

5
13

Output:

storedValue

16

Copy Constructor: limitations
! Copy constructor is called ONLY during

initialization of an object, NOT during
assignment.

! If you use assignment with IntCell, you will still
end up with member-wise assignment and a
shared value:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell object1(5);
IntCell object2(0);
object2 = object1; //object2.value=object1.value

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

13
13

Output:

17

14.5 Operator Overloading
! Operators such as =, +, <, and others can be

defined to work for objects of a user-defined class
! The name of the function defining the over-loaded

operator is operator followed by the operator
symbol:
operator+ to define the + operator, and
operator= to define the = operator

! Just like a regular member function:
- Prototype goes in the class declaration
- Function definition goes in implementation file

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

18

Operator Overloading

! Prototype in Time class declaration:

! operator- is the function name
! The operator function is defined from the

perspective of the object on the left side of the -
- hour and minute will be from the left hand side (t1)

! Time right is the parameter for the right hand
side of operator (t2).

! The operator function is called via object on left
side

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int operator- (Time right);

static int getObjectCount();

t1 - t2 will return the
total number of minutes
between t1 and t2

19

Invoking an Overloaded Operator

! Operator can be invoked (called) like a normal
member function:

! It can also be called using the more conventional
operator syntax:

! Both call the same operator- function, from the
perspective of object1

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int minutes = object1.operator-(object2);

static int getObjectCount();

int minutes = object1 - object2;
This is the main reason to overload operators,
so you can use this syntax for objects of your class

20

Example: minus for Time objects

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time {
! private:
! int hour, minute;
! public:
! int operator- (Time right);
};

int Time::operator- (Time right) { //Note: 12%12 = 0
 return (hour%12)*60 + minute -
 ((right.hour%12)*60 + right.minute);
}

//in a driver:
Time time1(12,20), time2(4,40);
int minutesDiff = time2 - time1;
cout << minutesDiff << endl; Output: 260

Subtraction

21

Overloading == and < for Time

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time
{
 private:
 int hour;
 int minute;
 void addHour();

 public:
 Time();
 Time(int);
 Time(int,int);
 void addMinute(); //adds one minute
 void addMinute(int); //adds n minutes
 int getHour();
 int getMinute();

 int operator- (Time right);
 bool operator== (Time right);
 bool operator< (Time right);

 void setHour(int);
 void setMinute(int);

 string display();
};

22

Overloading == and < for Time

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bool Time::operator== (Time right) {
 if (hour == right.hour &&
 minute == right.minute)
 return true;
 else
 return false;
}

bool Time::operator< (Time right) {
 if (hour == right.hour)
 return (minute < right.minute);
 return (hour%12) < (right.hour%12);
}

//in a driver:
Time time1(12,20), time2(12,21);
if (time1<time2) cout << “correct” << endl;
time1.addMinute();
if (time1==time2) cout << “correct again”<< endl;

23

Overloading + for Time

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time {
 private:
 int hour, minute;
 public:
 Time operator+ (Time right);
};
Time Time::operator+ (Time right) { //Note: 12%12 = 0
 int totalMin = (hour%12)*60 + minute +
 (right.hour%12)*60 + right.minute;
 int h = totalMin / 60; //integer division, total hours
 h = h%12; //keep it between 0 and 11
 if (h==0) h = 12; //convert 0:xx to 12:xx
 Time result(h, totalMin % 60); //create new time obj
 return result;
}
//in a driver:
 Time t1(12,5);
 Time t2(2,50);
 Time t3 = t1+t2;
 cout << t3.display() << endl;

Output: 2:55

24

Overload = for IntCell

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class IntCell {
 private:
 int *value;
 public:
 IntCell(const IntCell &obj);
 IntCell(int);
 ~IntCell();
 int read() const;
 void write(int);
 void operator= (IntCell rhs);
};

void IntCell::operator= (IntCell rhs) {
 write(rhs.read());
}

//in a driver:
IntCell object1(5), object2(0);
object2 = object1;
object2.write(13);
cout << object1.read() << endl;

Output: 5

Now = for IntCell will not
use member-wise assignment

