I Ch 14: More About Classes

CS 2308
Fall 2013

Jill Seaman

—

Tree class declaration

// Tree class
class Tree {
private:
static int objectCount;
public:
Tree();
int getObjectCount();

}i

// Definition of the static member variable, written
// outside the class.
int Tree::objectCount = 0;

// Member functions defined

Tree::Tree() {
objectCount++;

}

int Tree::getObjectCount() {
return objectCount;

}

s tatc Members

.1 Instance and Static Members

* instance variable: a member variable in a class.
Each object (instance) has its own copy.

- static variable: one variable shared among all
objects of a class

» static member function:

- can be used to access static member variable;
» normal functions can access static member variables, too
- but it cannot access instance variables

- can be called before any objects are defined

\

(. it variable

rogram demo of static variable

#include <iostream>
using namespace std;
#include "Tree.h"

int main() {
Tree oak;
Tree elm;
Tree pine;

cout << “We have “ << pine.getObjectCount()
<< “Trees in our program.\n”;

}

What will be the output?

| Three Instances of the Tree Class,
But Only One objectCount Variable

objectCount variable

(static)
3
/ L \
oak elm pine

Instances of the Tree class

\

— B

— o

14.3 Member-wise Assignment

« Canuse =to
- assign (copy) one object to another, or
- initialize an object with another object’s data
« Copies member to member. e.g., [Justiike=for structs]

instance2 = instancel;

means: copy all member values from instance1
and assign to the corresponding member
variables of instance2

* Also used at initialization: Time t2 = t1;

\

static member function

* Declared with static before return type:

’static int getObjectCount(); ‘

» Static member functions can access static
member data only

int Tree::getObjectCount() {
return objectCount;

}
» Can be called independently of objects (use
class name):
cout << “We have “ << Tree::getObjectCount() 6

<< “Trees in our program.\n”;

[e

ember-wise assignment: demo

Time t1(10, 20);
Time t2(12, 40);
cout << “tl: “ << tl.display() << endl;
cout << “t2: “ << t2.display() << endl;
t2 = t1;
cout << “tl: “ << tl.display() << endl;
cout << “t2: “ << t2.display() << endl;
Output:
t2 = tl; //equivalent to: tl: 10:20
t2.hour = tl.hour; t2: 12:40
t2.minute = tl.minute; tl: 10:20
t2: 10:20
8

[- 10 ton

14.4 Copy Constructors IntCell declaration

Special constructor used when a newly created Problem: what if the object contains a pointer?
object is initialized using another object of the
same class. c{:lass IntCell

Time t1; priyate: :

Time t2, (t1); int *storedvalue; //ptr to int

Time t3 = t1; public:

IntCell (int initialvValue);
[used implicitly when passing arguments by value] int vead |} const;

The default copy constructor copies field-to-field y, e vmee Gmeos
(member-wise assignment).
Default copy constructor works fine in man
cases 9 10

\ \

| | Problem with member-wise

IntCell Implementation

#include “IntCell.h” What we get from member-wise assignment in
IntCell::IntCell (int initialvValue) { ObJeCtS Contalnlng dynam|C memory (ptrS)
storedvValue = new int;
*storedvValue = initialvValue; IntCell objectl(5);
} IntCell object2 = objectl; // calls copy constructor
Inggié%__é : ;igng\lliil)Jeg //object2.storedvValue=objectl.storedvValue
} object2.write(13);
int IntCell::read () const { cout << objectl.read() << endl;
return *storedvalue; cout << object2.read() << endl;
}
void IntCell::write (int x) { What is output? 5 13
*storedvValue = x; 13 or 13
}

| Problem with member-wise | Programmer-Defined

assignment Copy Constructor
Why are they both changed to 13? Prototype and definition of copy constructor:
Member-wise assignment does a shallow copy. IntCell(const IntCell &obj); | Add to class declaration|
It copies the pointer’s address instead of
allocating new memory and copying IneCell::IntCell(const IntCell sobj) {
storedvalue = new int;
As a result’ both Objects point to the same X *storedvValue = obj.read(); //or *(obj.storedvalue)
location in memory
13 Copy constructor takes a reference parameter to
Il y
opjectt object? an object of the class
storedvalue %% otherwise, pass-by-value would use the copy
[7] constructor to initialize the obj parameter, which
13 14,
would call the copy constructor: this is an infinite loop
\ \

(_ - Programmer-Defined (_ -

Copy Constructor Copy Constructor: limitations

Copy constructor is called ONLY during

Each object now points to separate dynamic initialization of an object, NOT during

memory: ;
assignment.
IntCell objectl(5); .)) .
IntCell object2 = objectl; //now calls MY copy constr |f you use aSSIgnment with |ntCe"’ yOU will stl"
object2.write(13); end up with member-wise assignment and a
cout << objectl.read() << endl; Output: | 5 .
cout << object2.read() << endl; m Shared Value-

IntCell objectl(5);

objectl IntCell object2(0);

object2 = objectl; //object2.value=objectl.value
storedvalue object2.write(13); Outout:
] cout << objectl.read() << endl; utput: :]Ig

cout << object2.read() << endl;

Operators such as =, +, <, and others can be
‘ defined to work for objects of a user-defined class

The name of the function defining the over-loaded
operator is operator followed by the operator
symbol:

operator+ to define the + operator, and

operator= to define the = operator

14.5 Operator Overloading

Just like a regular member function:
Prototype goes in the class declaration
Function definition goes in implementation file

17

Invoking an Overloaded Operator

‘ Operator can be invoked (called) like a normal
member function:

int minutes = objectl.operator-(object2);

It can also be called using the more conventional
operator syntax:

int minutes = objectl - object2;

This is the main reason to overload operators,
so you can use this syntax for objects of your class

Both call the same operator- function, from the
perspective of object1

19

—

Operator Overloading

Prototype in Time class declaration:

int operator- (Time right); |!-t2wilretun the

between t1 and 2

total number of minutes
operator- is the function name

The operator function is defined from the
perspective of the object on the left side of the -

hour and minute will be from the left hand side (t1)

Time right is the parameter for the right hand
side of operator (12).

The operator function is called via object on left
side a

Example: minus for Time objects

class Time { Subtraction
private:
int hour, minute;
public:

int operator- (Time right);

}i

int Time::operator- (Time right) { //Note: 12%12 = 0
return (hour%12)*60 + minute -
((right.hour%12)*60 + right.minute);
}

//in a driver:
Time timel(12,20), time2(4,40);

int minutesDiff = time2 - timel; -
cout << minutesDiff << endl; Output: 260

20

Overloading == and < for Time

class Time
{
private:
int hour;
int minute;
void addHour();

public:
Time();
Time(int);
Time(int,int);
void addMinute(); //adds one minute
void addMinute(int); //adds n minutes
int getHour();
int getMinute();

int operator- (Time right);
bool operator== (Time right);
bool operator< (Time right);

void setHour(int);
void setMinute(int);

string display(); 21

}i

Overloading == and < for Time

bool Time::operator== (Time right) {
if (hour == right.hour &&
minute == right.minute)
return true;
else
return false;

}

bool Time::operator< (Time right) {
if (hour == right.hour)
return (minute < right.minute);
return (hour%12) < (right.hour%12);
}

//in a driver:

Time timel(12,20), time2(12,21);

if (timel<time2) cout << “correct” << endl;
timel.addMinute();

if (timel==time2) cout << “correct again”<< endl; 22

Overloading + for Time

class Time {
private:
int hour, minute;
public:
Time operator+ (Time right);
}i
Time Time::operator+ (Time right) { //Note: 12%12 = 0
int totalMin = (hour%12)*60 + minute +
(right.hour%12)*60 + right.minute;
int h = totalMin / 60; //integer division, total hours
h = h%12; //keep it between 0 and 11
if (h==0) h = 12; //convert 0:xx to 12:xx
Time result(h, totalMin % 60); //create new time obj
return result;

}

//in a driver:

Time t1(12,5);

Time t2(2,50);

Time t3 = tl+t2;

cout << t3.display() << endl; 23

Overload = for IntCell

class IntCell { Now = for IntCell will not
private: use member-wise assignment
int *value;
public:

IntCell(const IntCell &obj);
IntCell(int);

~IntCell();

int read() const;

void write(int);

void operator= (IntCell rhs);

}i

void IntCell::operator= (IntCell rhs) {
write(rhs.read());

}

//in a driver:
IntCell objectl(5), object2(0);

object2 = objectl; A
object2.write(13); Output: 5 24

cout << objectl.read() << endl;

