
1

Ch 8. Searching and Sorting Arrays
8.1 and 8.3 only

CS 2308
Fall 2013

Jill Seaman

Covers objectives 1-4 in the syllabus

2

Definitions of Search and Sort

! Search: find a given item in an array, return
the index to the item, or -1 if not found.

! Sort: rearrange the items in an array into some
order (smallest to biggest, alphabetical order,
etc.).

! There are various methods (algorithms) for
carrying out these common tasks.

! Which ones are better? Why?

3

Linear Search

! Very simple method.
! Compare first element to target value,

if not found then compare second element to
target value . . .

! Repeat until:
target value is found (return its index) or
we run out of items (return -1).

4

Linear Search in C++
first attempt

int searchList (int list[], int size, int target) {

 int position = -1; //position of target

 for (int i=0; i<size; i++)
 {
 if (list[i] == target) //found the target!
 position = i; //record which item
 }
 return position;
}

Is this algorithm correct?

Is this algorithm efficient (or does it do unnecessary work)?

5

Linear Search in C++
second attempt

int searchList (int list[], int size, int value) {

 int index=0; //index to process the array
 int position = -1; //position of target
 bool found = false; //flag, true when target is found

 while (index < size && !found)
 {
 if (list[index] == value) //found the target!
 {
 found = true; //set the flag
 position = index; //record which item
 }
 index++; //increment loop index
 }
 return position;
}

Is this algorithm correct?

Is this algorithm efficient (or does it do unnecessary work)? 6

Program that uses linear search
#include <iostream>
using namespace std;

int searchList(int[], int, int);

int main() {
 const int SIZE=5;
 int idNums[SIZE] = {871, 750, 988, 100, 822};
 int results, id;

 cout << “Enter the employee ID to search for: “;
 cin >> id;

 results = searchList(idNums, SIZE, id);

 if (results == -1) {
 cout << “That id number is not registered\n”;
 } else {
 cout << “That id number is found at location “;
 cout << results+1 << endl;
 }
}

7

Evaluating the Algorithm
! Does it do any unnecessary work?
! Is it efficient? How would we know?
! We measure efficiency of algorithms in terms of

number of main steps required to finish.
! For search algorithms, the main step is

comparing an array element to the target value.
! Number of steps depends on:

− size of input array
− whether or not value is in array
− where the value is in the array 8

Efficiency of Linear Search
how many steps?

Note: if we search for many items that are not in
the array, the average case result will increase.

N=50,000 In terms of N

Best
Case:

1 1

Average
Case:

25,000 N/2

Worst
Case:

50,000 N

N is the number of elements in the array

9

Binary Search
! Works only for SORTED arrays
! Divide and conquer style algorithm
! Compare target value to middle element in list.

− if equal, then return its index
− if less than middle element, repeat the search in

the first half of list
− if greater than middle element, repeat the search

in last half of list
! If current search list is narrowed down to 0

elements, return -1 10

Binary Search Algorithm
! The algorithm described in pseudocode:
 while (number of items in list >= 1)

 if (item at middle position is equal to target)
 target is found! End of algorithm
 else
 if (target < middle item) (narrow search list)
 list = lower half of list
 else
 list = upper half of list

end while

if we reach this point: target not found

11

Binary Search Algorithm
example

target is 11 first

first

first

last

last

last

target < 50

target > 7

target == 11

12

Binary Search in C++
int binarySearch (int array[], int size, int target) {

 int first = 0, //index to (current) first elem
 last = size – 1, //index to (current) last elem
 middle, //index of (current) middle elem
 position = -1; //index of target value
 bool found = false; //flag

 while (first <= last && !found) {

 middle = (first + last) /2; //calculate midpoint

 if (array[middle] == target) {
 found = true;
 position = middle;
 } else if (target < array[middle]) {
 last = middle – 1; //search lower half
 } else {
 first = middle + 1; //search upper half
 }
 }
 return position;
}

What if first + last is odd?
What if first==last?

13

Binary Search
Example Exam Question!

5

The target of your search is 42. Given the following list of integers,
record the values stored in the variables named first, last, and
middle during a binary search. Assume the following numbers are in
an array.

!

 ! !Repeat the exercise with a target of 82

first 0 0 4
last 14 6 6
middle 7 3 5

first 0 8 8 8 9
last 14 14 10 8 8
middle 7 11 9 8

Note: these are the indexes, not the values in the array

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

values:

indexes:

14

Program using Binary Search
#include <iostream>
using namespace std;

int binarySearch(int[], int, int);

int main() {
 const int SIZE=5;
 int idNums[SIZE] = {100, 750, 822, 871, 988};
 int results, id;

 cout << “Enter the employee ID to search for: “;
 cin >> id;

 results = binarySearch(idNums, SIZE, id);

 if (results == -1) {
 cout << “That id number is not registered\n”;
 } else {
 cout << “That id number is found at location “;
 cout << results+1 << endl;
 }
}

How is this program different
from the one on slide 6?

15

Efficiency of Binary Search

1024 = 210 <==> log2 1024 = 10

Items left to search Comparisons so far
1024 0
512 1
256 2
128 3
64 4
32 5
16 6
8 7
4 8
2 9
1 10

Calculate worst case for N=1024

Goal: calculate
this value from N

16

Efficiency of Binary Search
If N is the number of elements in the array,
how many comparisons (steps)?

N=50,000 In terms of N

Best
Case:

1 1

Worst
Case:

16 log2 N

1024 = 210 <==> log2 1024 = 10

N = 2steps <==> log2 N = steps

Rounded up to
next whole
number

To what power do I
raise 2 to get N?

17

Is Log2N better than N?
Is binary search better than linear search?

Compare values of N/2, N, and Log2 N as N increases:

N N/2 Log2N
5 2.5 2.3

50 25 5.6
500 250 9.0

5,000 2,500 12.3
50,000 25,000 15.6

N and N/2 are growing much faster than log N!

slower growing is more efficient (fewer steps).

Is this really a
fair comparison?

18

Classifications of (math) functions

! Last column is “big Oh notation”, used in CS.
! It ignores all but dominant term, constant factors

Constant f(x)=b O(1)

Logarithmic f(x)=logb(x) O(log n)

Linear f(x)=ax+b O(n)

Linearithmic f(x)=x logb(x) O(n log n)

Quadratic f(x)=ax2+bx+c O(n2)

Exponential f(x)=bx O(2n)

19

Comparing growth of functions

Time
(# of steps)

Data size (N)
20

Efficiency of Algorithms

! To classify the efficiency of an algorithm:
− Express “time” (using number of main steps or

comparisons), as a function of input size
− Determine which classification the function fits into.

! Nearer to the top of the chart is slower growth,
and more efficient (constant is better than
logarithmic, etc.)

21

8.3 Sorting Algorithms

! Sort: rearrange the items in an array into
ascending or descending order.

! Selection Sort
! Bubble Sort

55 112 78 14 20 179 42 67 190 7 101 1 122 170 8

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

unsorted

sorted
22

Why is sorting important?
! Searching in a sorted list is much easier than

searching in an unsorted list.
! Especially for people:

- dictionary entries (in a dictionary book)
- phone book (remember these?)
- card catalog in library (it used to be drawers of

index cards)

- bank statement: transactions in date order
! Most of the data displayed by computers is

sorted.

23

Selection Sort

! There is a pass for each position (0..size-1)
! On each pass, the smallest (minimum)

element in the rest of the list is exchanged
(swapped) with element at the current
position.

! The first part of the list (the part that is already
processed) is always sorted

! Each pass increases the size of the sorted
portion.

5

Selection Sort: Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

36

24

10

 6

12

U
N
S
O
R
T
E
D

6

Selection Sort: End Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

 6

24

10

36

12

U
N
S
O
R
T
E
D

SORTED

7

SORTED

Selection Sort: Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

 6

24

10

36

12

U
N
S
O
R
T
E
D

8

Selection Sort: End Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

U
N
S
O
R
T
E
D

SORTED

9

Selection Sort: Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

U
N
S
O
R
T
E
D

SORTED

10

Selection Sort: End Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

36

24

S
O
R
T
E
D

UNSORTED

11

Selection Sort: Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

36

24

S
O
R
T
E
D

UNSORTED

12

Selection Sort: End Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

24

36

S
O
R
T
E
D

32

Selection Sort in C++
// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
 int minIndex = start;
 for (int i = start+1; i < size; i++) {
 if (array[i] < array[minIndex]) {
 minIndex = i;
 }
 }
 return minIndex;
}

// Sorts an array, using findIndexOfMin
void selectionSort (int array[], int size) {
 int temp;
 int minIndex;
 for (int index = 0; index < (size -1); index++) {
 minIndex = findIndexOfMin(array, size, index);
 //swap
 temp = array[minIndex];
 array[minIndex] = array[index];
 array[index] = temp;
 }
}

Note: saving the index

We need to find the index of the minimum
value so that we can do the swap

33

Program using Selection Sort
#include <iostream>
using namespace std;

int findIndexOfMin (int [], int, int);
void selectionSort(int [], int);
void showArray(int [], int);

int main() {
 int values[6] = {7, 2, 3, 8, 9, 1};

 cout << “The unsorted values are: \n”;
 showArray (values, 6);

 selectionSort (values, 6);

 cout << “The sorted values are: \n”;
 showArray(values, 6);
}

void showArray (int array[], int size) {
 for (int i=0; i<size; i++)
 cout << array[i] << “ “ ;
 cout << endl;
}

The unsorted values are:
7 2 3 8 9 1
The sorted values are:
1 2 3 7 8 9

Output:

34

Efficiency of Selection Sort

! N is the number of elements in the list
! Outer loop (in selectionSort) executes N-1 times
! Inner loop (in minIndex) executes N-1, then N-2,

then N-3, ... then once.
! Total number of comparisons (in inner loop):

(N-1) + (N-2) + . . . + 2 + 1 = sum of 1 to N-1

Note: N + (N-1) + (N-2) + . . . + 2 + 1 = N(N+1)/2
Subtract N from each side:
 (N-1) + (N-2) + . . . + 2 + 1 = N(N+1)/2 - N
 = (N2+N)/2 - 2N/2
 = (N2+N-2N)/2
 = N2/2 - N/2

O(N2)

35

The Bubble Sort

! On each pass:
- Compare first two elements. If the first is bigger,

they exchange places (swap).
- Compare second and third elements. If second is

bigger, exchange them.
- Repeat until last two elements of the list are

compared.
! Repeat this process until a pass completes

with no exchanges
36

Bubble sort
Example

! 7 2 3 8 9 1 7 > 2, swap
! 2 7 3 8 9 1 7 > 3, swap
! 2 3 7 8 9 1 !(7 > 8), no swap
! 2 3 7 8 9 1 !(8 > 9), no swap
! 2 3 7 8 9 1 9 > 1, swap
! 2 3 7 8 1 9 finished pass 1, did 3 swaps

Note: This is one complete pass!

Note: largest element is now in last position

37

Bubble sort
Example

! 2 3 7 8 1 9 2<3<7<8, no swap, !(8<1), swap
! 2 3 7 1 8 9 (8<9) no swap
! finished pass 2, did one swap

! 2 3 7 1 8 9 2<3<7, no swap, !(7<1), swap
! 2 3 1 7 8 9 7<8<9, no swap
! finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions

38

Bubble sort
Example

! 2 3 1 7 8 9 2<3, !(3<1) swap, 3<7<8<9
! 2 1 3 7 8 9
! finished pass 4, did one swap
! 2 1 3 7 8 9 !(2<1) swap, 2<3<7<8<9
! 1 2 3 7 8 9
! finished pass 5, did one swap
! 1 2 3 7 8 9 1<2<3<7<8<9, no swaps
! finished pass 6, no swaps, list is sorted!

39

Bubble sort
how does it work?

! At the end of the first pass, the largest element is
moved to the end (it’s bigger than all its
neighbors)

! At the end of the second pass, the second largest
element is moved to just before the last element.

! The back end (tail) of the list remains sorted.
! Each pass increases the size of the sorted

portion.
! No exchanges implies each element is smaller

than its next neighbor (so the list is sorted).
40

Bubble Sort in C++

void bubbleSort (int array[], int size) {

 bool swap;
 int temp;

 do {

 swap = false;
 for (int i = 0; i < (size-1); i++) {

 if (array [i] > array[i+1]) {

 temp = array[i];
 array[i] = array[i+1];
 array[i+1] = temp;
 swap = true;
 }
 }
 } while (swap);
}

41

Program using bubble sort
#include <iostream>
using namespace std;

void bubbleSort(int [], int);
void showArray(int [], int);

int main() {
 int values[6] = {7, 2, 3, 8, 9, 1};

 cout << “The unsorted values are: \n”;
 showArray (values, 6);

 bubbleSort (values, 6);

 cout << “The sorted values are: \n”;
 showArray(values, 6);
}

void showArray (int array[], int size) {
 for (int i=0; i<size; i++)
 cout << array[i] << “ “ ;
 cout << endl;
}

The unsorted values are:
7 2 3 8 9 1
The sorted values are:
1 2 3 7 8 9

Output:

42

Efficiency of Bubble Sort

! Each pass makes N-1 comparisons
! There will be at most N passes

! So worst case it’s:

! If you change the algorithm to look at only the
unsorted part of the array in each pass, it’s
exactly like the selection sort:

O(N2) (N-1)*N = N2 - N

(N-1) + (N-2) + . . . + 2 + 1 = N2/2 - N/2 still O(N2)

