Ch 8. Searching and Sorting Arrays
8.1 and 8.3 only

CS 2308
Fall 2013
Jill Seaman

Covers objectives $1-4$ in the syllabus

Linear Search

- Very simple method.
- Compare first element to target value, if not found then compare second element to target value . . .
- Repeat until:
target value is found (return its index) or we run out of items (return -1).

Definitions of Search and Sort

- Search: find a given item in an array, return the index to the item, or -1 if not found.
- Sort: rearrange the items in an array into some order (smallest to biggest, alphabetical order, etc.).
- There are various methods (algorithms) for carrying out these common tasks.
- Which ones are better? Why?

Linear Search in C++

first attempt

```
int searchList (int list[], int size, int target) {
    int position = -1;
    //position of target
    for (int i=0; i<size; i++)
    { il
        (1ist[i] == target) //found the target
        position = i; //record which item
    }
    return position;
}
Is this algorithm correct?

\section*{Linear Search in C++ \\ second attempt}
```

int searchList (int list[], int size, int value) {
int index=0; //index to process the array
int position = -1; //position of target
bool found = false; //flag, true when target is found
while (index < size \&\& !found)
if (list[index] == value)
{ found = true;
position = index;
//set the flag
//record which item
}
}
return position;
}
Is this algorithm correct?
Is this algorithm efficient (or does it do unnecessary work)?

```

\section*{Program that uses linear search}

\section*{\#include <iostream> \\ using namespace std;}
int searchList(int[], int, int);
int main() \{
const int SIZE=5
int idNums[SIZE] \(=\{871,750,988,100,822\} ;\)
int results, id;
cout << "Enter the employee ID to search for: "; cin >> id;
results \(=\) searchList(idNums, SIZE, id);
if (results == -1) \{
cout << "That id number is not registered\n";
\} else \{
cout \(\ll\) "That id number is found at location "; cout \(\ll\) results+1 << endl;

\section*{Efficiency of Linear Search \\ how many steps?}

N is the number of elements in the array
\begin{tabular}{|l|c|c|}
\hline & \(\mathrm{N}=50,000\) & In terms of N \\
\hline \begin{tabular}{l} 
Best \\
Case:
\end{tabular} & 1 & 1 \\
\hline \begin{tabular}{l} 
Average \\
Case:
\end{tabular} & 25,000 & \(\mathrm{~N} / 2\) \\
\hline \begin{tabular}{l} 
Worst \\
Case:
\end{tabular} & 50,000 & N \\
\hline
\end{tabular}

Note: if we search for many items that are not in the array, the average case result will increase.

\section*{Binary Search}
- Works only for SORTED arrays
- Divide and conquer style algorithm
- Compare target value to middle element in list.
if equal, then return its index
if less than middle element, repeat the search in the first half of list
if greater than middle element, repeat the search in last half of list
- If current search list is narrowed down to 0 elements, return -1

\section*{Binary Search Algorithm \\ example}
target is 11
target < 50

target > 7
target \(==11\)


\section*{Binary Search Algorithm}
- The algorithm described in pseudocode:
while (number of items in list \(>=1\) )
if (item at middle position is equal to target)
target is found! End of algorithm else
if (target < middle item) list = lower half of list else
list = upper half of list
end while
if we reach this point: target not found

\section*{Binary Search in C++}
```

int binarySearch (int array[], int size, int target) {
int first = 0, //index to (current) first elem
last = size - 1, //index to (current) last elem
l/index to (current) last elem
middle,
bool found = false; l/flag
while (first <= last \&\& !found) {
middle = (first + last) /2; //calculate midpoint
if (array[middle] == target) { }\quad\begin{array}{ll}{\mathrm{ What if first + last is odd? }}
{\mathrm{ found = true; }}\&{\mathrm{ What if first==last?}}
position = middle;
} else if (target < array[middle]) {
last = middle - 1; //search lower half
} else {
} else { first = middle + 1;
}
}
return position:
}

```

\section*{Binary Search \\ Example Exam Question!}

The target of your search is 42 . Given the following list of integers, record the values stored in the variables named first, last, and middle during a binary search. Assume the following numbers are in an array.
values:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{1}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{1 4}\) & \(\mathbf{2 0}\) & \(\mathbf{4 2}\) & \(\mathbf{5 5}\) & \(\mathbf{6 7}\) & \(\mathbf{7 8}\) & \(\mathbf{1 0 1}\) & \(\mathbf{1 1 2}\) & \(\mathbf{1 2 2}\) & \(\mathbf{1 7 0}\) & \(\mathbf{1 7 9}\) & \(\mathbf{1 9 0}\) \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline
\end{tabular}

Repeat the exercise with a target of 82
\begin{tabular}{|lrrr|}
\hline first & 0 & 0 & 4 \\
last & 14 & 6 & 6 \\
middle & 7 & 3 & 5
\end{tabular}
\begin{tabular}{lrrrrr} 
first & 0 & 8 & 8 & 8 & 9 \\
last & 14 & 14 & 10 & 8 & 8 \\
middle & 7 & 11 & 9 & 8 & \\
\hline
\end{tabular}

Note: these are the indexes, not the values in the array

\section*{Program using Binary Search}
\#include <iostream>
using namespace std,
int binarySearch(int[], int, int);
int main() \{
const int SIZE=5;
int idNums[SIZE] \(=\{100,750,822,871,988\} ;\)
int results, id;
cout << "Enter the employee ID to search for: ";
cin >> id;
results = binarySearch(idNums, SIZE, id);
if (results == -1) \{
cout << "That id number is not registered \(\backslash n\) ";
\} else \{
cout \(\ll\) "That id number is found at location"; cout << results+1 << endl;

\section*{Efficiency of Binary Search}

Calculate worst case for \(\mathrm{N}=1024\)
\begin{tabular}{|c|c|}
\hline Items left to search & Comparisons so far \\
\hline 1024 & 0 \\
\hline 512 & 1 \\
\hline 256 & 2 \\
\hline 128 & 3 \\
\hline 64 & 4 \\
\hline 32 & 5 \\
\hline 16 & 6 \\
\hline 8 & 7 \\
\hline 4 & 8 \\
\hline 2 & 9 \\
\hline 1 & 10 \\
\hline \(1024=2^{10} \quad<==>\) & \(\log _{2} 1024=10\) \\
\hline
\end{tabular}

\section*{Efficiency of Binary Search}

If N is the number of elements in the array, how many comparisons (steps)?
\begin{tabular}{|lc||}
\hline \(1024=2^{10}\) & \(<==>\log _{2} 1024=10\) \\
\hline\(N=2^{\text {steps }}\) & \(<==>\quad \log _{2} N=\) steps
\end{tabular} \begin{tabular}{l} 
To what power do I \\
raise 2 to get \(N\) ?
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline & \(\mathrm{N}=50,000\) & In terms of N \\
\hline \begin{tabular}{l} 
Best \\
Case:
\end{tabular} & 1 & 1 \\
\hline \begin{tabular}{l} 
Worst \\
Case:
\end{tabular} & 16 & \(\log _{2} \mathrm{~N} \quad\), \\
\hline
\end{tabular}

\section*{Is \(\log _{2} \mathrm{~N}\) better than N ?}

Is binary search better than linear search?
Is this really a
fair comparison?
Compare values of \(\mathrm{N} / 2, \mathrm{~N}\), and \(\log _{2} \mathrm{~N}\) as N increases:
\begin{tabular}{|r|r|r|}
\hline N & \(\mathrm{N} / 2\) & \(\log _{2} \mathrm{~N}\) \\
\hline 5 & 2.5 & 2.3 \\
\hline 50 & 25 & 5.6 \\
\hline 500 & 250 & 9.0 \\
\hline 5,000 & 2,500 & 12.3 \\
\hline 50,000 & 25,000 & 15.6 \\
\hline
\end{tabular}
\(N\) and \(N / 2\) are growing much faster than \(\log N\) ! slower growing is more efficient (fewer steps).

\section*{Comparing growth of functions}

Time (\# of steps)

\section*{Classifications of (math) functions}
\begin{tabular}{|l|l|l|}
\hline Constant & \(\mathrm{f}(\mathrm{x})=\mathrm{b}\) & \(\mathrm{O}(1)\) \\
\hline Logarithmic & \(\mathrm{f}(\mathrm{x})=\log _{\mathrm{b}}(\mathrm{x})\) & \(\mathrm{O}(\log \mathrm{n})\) \\
\hline Linear & \(\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}\) & \(\mathrm{O}(\mathrm{n})\) \\
\hline Linearithmic & \(\mathrm{f}(\mathrm{x})=\mathrm{x} \log _{\mathrm{b}}(\mathrm{x})\) & \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) \\
\hline Quadratic & \(\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\) & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) \\
\hline Exponential & \(\mathrm{f}(\mathrm{x})=\mathrm{b}^{\mathrm{x}}\) & \(\mathrm{O}\left(2^{\mathrm{n}}\right)\) \\
\hline
\end{tabular}
- Last column is "big Oh notation", used in CS.
- It ignores all but dominant term, constant factors

\section*{Efficiency of Algorithms}
- To classify the efficiency of an algorithm:

Express "time" (using number of main steps or comparisons), as a function of input size
Determine which classification the function fits into.
- Nearer to the top of the chart is slower growth, and more efficient (constant is better than logarithmic, etc.)

\subsection*{8.3 Sorting Algorithms}
- Sort: rearrange the items in an array into ascending or descending order.
- Selection Sort
- Bubble Sort


551127814201794267190710111221708 unsorted
\(178142042556778101112122170179190 \quad\) 21 sorted

\section*{Selection Sort}
- There is a pass for each position (0..size-1)
- On each pass, the smallest (minimum) element in the rest of the list is exchanged (swapped) with element at the current position.
- The first part of the list (the part that is already processed) is always sorted
- Each pass increases the size of the sorted portion.

\section*{Why is sorting important?}
- Searching in a sorted list is much easier than searching in an unsorted list.
- Especially for people:
- dictionary entries (in a dictionary book)
- phone book (remember these?)
- card catalog in library (it used to be drawers of index cards)
- bank statement: transactions in date order
- Most of the data displayed by computers, \({ }_{2}\) is sorted.

\section*{Selection Sort: Pass One}


\section*{Selection Sort: End Pass One}


Selection Sort: Pass Two


Selection Sort: Pass Three


\section*{Selection Sort: End Pass Three}

Selection Sort: Pass Four
values

values [0]
\begin{tabular}{|c|r|}
\hline\([0]\) & 6 \\
\cline { 2 - 2 }\([1]\) & 10 \\
\cline { 2 - 2 }\([2]\) & 12 \\
\cline { 2 - 2 }\([3]\) & 36 \\
\cline { 2 - 2 }\([4]\) & 24 \\
\hline
\end{tabular}


\section*{Selection Sort: End Pass Four}


\section*{Selection Sort in C++}
// Returns the index of the smallest element, starting at start int findIndexOfMin (int array[], int size, int start) \{ int minIndex \(=\) start;
for (int \(i=\) start+1; \(i<s i z e ; i++\) ) \(\quad\) Note: saving the index
if (array[i] < array[minIndex]) \{ minIndex \(=i ;\)
\} \}
return minIndex
We need to find the index of the minimum
\}
value so that we can do the swap
// Sorts an array, using findIndexOfMin
void selectionSort (int array[], int size) \{ int temp;
int minind
(int index \(=0\); index \(<(\) size -1\()\); index++) \(\{\) minIndex \(=\) findIndexOfMin(array, size, index) //swap
temp \(=\) array[minIndex];
array[minIndex] = array[index];
array[index] = temp
32

\section*{Program using Selection Sort}
```

\#include <iostream>
using namespace std;
int findIndexOfMin (int [], int, int);
void selectionSort(int [], int);
void showArray(int [], int);
int main() {
int values[6] = {7, 2, 3, 8, 9, 1};
cout << "The unsorted values are: \n";
showArray (values, 6);
selectionSort (values, 6);
cout << "The sorted values are: \n";
showArray(values, 6);
}
void showArray (int array[], int size) {
for (int i=0; i<size; i++)
cout << array[i] << ""، ;
cout << endl;

```

\section*{The Bubble Sort}
- On each pass:
- Compare first two elements. If the first is bigger, they exchange places (swap).
- Compare second and third elements. If second is bigger, exchange them.
- Repeat until last two elements of the list are compared.
- Repeat this process until a pass completes with no exchanges

\section*{Efficiency of Selection Sort}
- \(N\) is the number of elements in the list
- Outer loop (in selectionSort) executes N-1 times
- Inner loop (in minIndex) executes N-1, then N-2, then \(\mathrm{N}-3, \ldots\) then once.
- Total number of comparisons (in inner loop):
\((\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\) sum of 1 to \(\mathrm{N}-1\)
Note: \(\mathrm{N}+(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}(\mathrm{N}+1) / 2\) Subtract \(N\) from each side:
\((\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}(\mathrm{N}+1) / 2-\mathrm{N}\)
\(=\left(\mathrm{N}^{2}+\mathrm{N}\right) / 2-2 \mathrm{~N} / 2\)
\(=\left(\mathrm{N}^{2}+\mathrm{N}-2 \mathrm{~N}\right) / 2\)
\(\mathbf{O}\left(\mathbf{N}^{2}\right) \quad 34\)
\(=\mathrm{N}^{2} / 2-\mathrm{N} / 2\)

\section*{Bubble sort \\ Example}
-723891 7 > 2, swap
-273891 7 > 3, swap
-237891 !(7 > 8), no swap
-237891 !(8 > 9), no swap
-237891 9 > 1, swap
- \(23781 \underline{9}\) finished pass 1, did 3 swaps

Note: largest element is now in last position

\section*{Bubble sort}

Example
- \(237819 \quad 2<3<7<8\), no swap, !(8<1), swap
- \(2371 \underline{89} \quad(8<9)\) no swap
- finished pass 2, did one swap

2 largest elements in last 2 positions
-237189 \(2<3<7\), no swap, ! \((7<1)\), swap
- 231789 7<8<9, no swap
- finished pass 3, did one swap

3 largest elements in last 3 positions

\section*{Bubble sort \\ how does it work?}
- At the end of the first pass, the largest element is moved to the end (it's bigger than all its neighbors)
- At the end of the second pass, the second largest element is moved to just before the last element.
- The back end (tail) of the list remains sorted.
- Each pass increases the size of the sorted portion.
- No exchanges implies each element is smaller than its next neighbor (so the list is sorted).

\section*{Bubble sort \\ Example}
-231789 \(2<3\), !( \(3<1\) ) swap, \(3<7<8<9\)
- \(21 \underline{3789}\)
- finished pass 4, did one swap
-213789 !(2<1) swap, \(2<3<7<8<9\)
- \(1 \underline{23789}\)
- finished pass 5 , did one swap
- \(123789 \quad 1<2<3<7<8<9\), no swaps
- finished pass 6 , no swaps, list is sorted!

\section*{Bubble Sort in C++}
```

void bubbleSort (int array[], int size) {
bool swap;
int temp;
do {
swap = false;
for (int i = 0; i < (size-1); i++) {
if (array [i] > array[i+1]) {
temp = array[i];
array[i] = array[i+1];
array[i+1] = temp
swap = true;
}
}
} while (swap);
}

```

\section*{Program using bubble sort}
```

\#include <iostream>
using namespace std;
void bubbleSort(int [], int);
void showArray(int [], int);
int main() {
int values[6] = {7, 2, 3, 8, 9, 1};
cout << "The unsorted values are: \n";
showArray (values, 6);
bubbleSort (values, 6);
cout << "The sorted values are: \n";
showArray(values, 6);
}
void showArray (int array[], int size) {
for (int i=0; i<size; i++)
cout << array[i] << " "، ;
cout << endl;

```

Output:
The unsorted values are: 723891 The sorted values are: 123789

\section*{Efficiency of Bubble Sort}
- Each pass makes N-1 comparisons
- There will be at most N passes
- So worst case it's: \(\quad(\mathrm{N}-1)^{*} \mathrm{~N}=\mathrm{N}^{2}-\mathrm{N}\)
- If you change the algorithm to look at only the unsorted part of the array in each pass, it's exactly like the selection sort:
\[
(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}^{2} / 2-\mathrm{N} / 2 \quad \text { still } \mathbf{O}\left(\mathbf{N}^{2}\right)
\]```

