
1

C++ Programming on Linux
Multi-file development

CS 2308
Fall 2013

Jill Seaman

2

Programs with Multiple Files
! How the code is usually split up

★ Put main in its own file, with helper functions
➡ acts like a driver

★ Put each class declaration in a separate *.h file
(called a header file)

★ Put the implementation of each class (the member
function definitions) in its own *.cpp file

★ Each *.cpp file (including the driver) must #include
the header file of each class that it uses or
implements.

3

Time class, separate files

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include <string>
using namespace std;

// models a 12 hour clock
class Time {

private:
 int hour;
 int minute;
 void addHour();

public:
 void setHour(int);
 void setMinute(int);
 int getHour() const;
 int getMinute() const;

 string display() const;
 void addMinute();
};

//Example using Time class
#include<iostream>
#include "Time.h"
using namespace std;

int main() {
 Time t;
 t.setHour(12);
 t.setMinute(58);
 cout << t.display() <<endl;
 t.addMinute();
 cout << t.display() << endl;
 t.addMinute();
 cout << t.display() << endl;
 return 0;
}

Time.h Driver.cpp

4

Time class, separate files

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include <iomanip>
#include <sstream>
#include "Time.h"
using namespace std;

void Time::setHour(int hr) {
 hour = hr;
}

void Time::setMinute(int min) {
 minute = min;
}

int Time::getHour() const {
 return hour;
}

int Time::getMinute() const {
 return minute;
}

void Time::addHour() {
 if (hour == 12)
 hour = 1;
 else
 hour++;
}
void Time::addMinute() {
 if (minute == 59) {
 minute = 0;
 addHour();
 } else
 minute++;
}
string Time::display() const {
 ostringstream sout;
 sout.fill('0');
 sout << hour << ":"
 << setw(2) << minute;
 return sout.str();
}

Time.cpp

5

How to compile a multiple file
program

! From the command line (either order):

✴ The header file should not be listed.
 (it only needs to be #included in *.cpp files)

✴ one (and only one) file must have the main function

• a.out is (by default) the executable for the entire
program.

[...]$g++ Time.cpp Driver.cpp

[...]$./a.out
12:58
12:59
1:00

6

Separate Compilation
! If we make a change to Driver.cpp, we have to

recompile it
✴ but we would rather not have to recompile Time.cpp

as well.
! We can compile one file at a time, and link the

results together later to make the executable.
! Compiling without linking (use -c option):

✴ -c option produces object files, with a .o extension
(Time.o, Driver.o)

[...]$g++ -c Time.cpp
[...]$g++ -c Driver.cpp

7

Separate Compilation

• The .o files must be linked together to produce
the executable file (a.out):

• Now if we change only Time.cpp, we can
recompile just Time.cpp, and link the new .o file
to the original Driver.o file:

[...]$ g++ Time.o Driver.o
[...]$./a.out

[...]$g++ -c Time.cpp
[...]$g++ Time.o Driver.o
[...]$./a.out

Note there is no option used here

Links new Time.o to old Driver.o,
making a new a.out

Produces new Time.o

8

Make

! Make is a utility that manages (separate)
compilation of large groups of source files.

! After the first time a project is compiled, make
re-compiles only the changed files (and the files
depending on the changed files).

! These dependencies are defined by rules
contained in a makefile.

! The rules are defined and managed by humans
(programmers).

9

Make

! Rule format:

! target is a filename (or an action/goal name)
! In order to produce the target file, the

prerequisite files must exist and be up to date
(if not, make finds a rule to produce them).

! An example rule:

target: [prerequisite files]
<tab> [command to execute]

Time.o: Time.cpp Time.h
! g++ -c Time.cpp

If Time.cpp or Time.h has changed,
reproduce Time.o using this command

10

Make

! executing the make command with no
arguments executes first rule in the makefile.
✴ This may trigger execution of other rules.

! executing the make command followed by a
target executes the rule for that target.

11

Makefile

! makefile (a text file named “makefile”):

! Note: “timeTest” is the name of the executable
file in this example (not a.out).

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#makefile

timeTest: Driver.o Time.o
! g++ Driver.o Time.o -o timeTest

Driver.o: Driver.cpp Time.h
! g++ -c Driver.cpp

Time.o: Time.cpp Time.h
! g++ -c Time.cpp

Do not copy/paste
this to your makefile

12

Compile class + driver using make

• Make:

Execute:

• Modify Driver.cpp, make again:

[...]$ make
g++ -c Driver.cpp
g++ -c Time.cpp
g++ Driver.o Time.o -o timeTest

[...]$./timeTest
12:58
12:59
1:00

[...]$ make
g++ -c Driver.cpp
g++ Driver.o Time.o -o timeTest

