
!1

Pointers to Structs and Objects,
and the “this” pointer

CS 2308
Fall 2013

!
Jill Seaman

Sections: 11.9, 13.3, & 14.5

!2

11.9: Pointers to Structures

! Given the following Structure:
!

!

!

! We can define a pointer to a structure
!

!

! Now studentPtr points to the s1 structure. 

struct Student {!
 string name; // Student’s name!
 int idNum; // Student ID number!
 int creditHours; // Credit hours enrolled!
 float gpa; // Current GPA!
};

Student s1 = {“Jane Doe”, 12345, 15, 3.3};!
Student *studentPtr;!
studentPtr = &s1;

!3

Pointers to Structures

! How to access a member through the pointer?
!

!

!

! dot operator has higher precedence than the
dereferencing operator, so:
!

! So this will work: 

Student s1 = {“Jane Doe”, 12345, 15, 3.3};!
Student *studentPtr;!
studentPtr = &s1;!
!
cout << *studentPtr.name << end; // ERROR

*studentPtr.name *(studentPtr.name) is equivalent to

cout << (*studentPtr).name << end; // WORKS

studentPtr is not a structure!

!4

structure pointer operator: ->

! Due to the “awkwardness” of the notation, C has
provided an operator for dereferencing structure
pointers:
!

! The structure pointer operator is the hyphen (-)
followed by the greater than (>), like an arrow.

! In summary: 

studentPtr->name (*studentPtr).nameis equivalent to

sptr->name // a member of a structure pointed to by sptr

s1.name // a member of structure s1

!5

Structure Pointer: example
! Function to input a student, using a ptr to struct
!

!

!

!

!

!

! Call:

void inputStudent(Student *s) {!
 cout << “Enter Student name: “;!
 getline(cin,s->name);!
!
 cout << “Enter studentID: “;!
 cin >> s->idNum;!
!
 cout << “Enter credit hours: “;!
 cin >> s->creditHours;!
!
 cout << “Enter GPA: “;!
 cin >> s->gpa;!
}

cout << “Name” << name1 << endl;

Student s1;!
inputStudent(&s1);!
cout << s1.name << endl; !
... !6

Dynamically Allocating Structures

! Structures can be dynamically allocated with new:
!

!

!

!

! Arrays of structures can also be dynamically
allocated:

Student *sptr;!
sptr = new Student;!
!
sptr->name = “Jane Doe”;!
sptr->idNum = 12345;!
...!
delete sptr;

Student *sptr;!
sptr = new Student[100];!
sptr[0].name = “John Deer”;!
...!
delete [] sptr;

!7

Structures and Pointers: syntax
! Expressions:

cout << “Name” << name1 << endl;

s->m s is a structure pointer, m is a member

*a.p a is a structure, p (a pointer) is a member. This
expr is the value pointed to by p: *(a.p)

(*s).m s is a structure pointer, m is a member. Equivalent
to s->m

*s->p s is a structure pointer, and p (a pointer) is in the
structure pointed to by s. Equiv to *(s->p).

*(*s).p s is a structure pointer, and p (a pointer) is in the
structure pointed to by s. Equiv to *(s->p).

!8

in 13.3: Pointers to Objects

! We can define pointers to objects, just like
pointers to structures
!

!

! We can access public members of the object
using the structure pointer operator (->)

Time t1(12,20);!
Time *timePtr;!
timePtr = &t1;

timePtr->addMinute();!
cout << timePtr->display() << endl;

Output:!
12:21

!9

Dynamically Allocating Objects

! Objects can be dynamically allocated with new:
!

!

!

! Arrays of objects can also be dynamically
allocated:

Time *tptr;!
tptr = new Time(12,20); !
!
...!
delete tptr;

Time *tptr;!
tptr = new Time[100];!
tptr[0].addMinute();!
...!
delete [] tptr;

You can pass arguments
to a constructor using
this syntax.

It can use only the default
constructor to initialize the
elements in the new array.

!10

deleting Dynamically Allocated
Objects

! Recall IntCell, with dynamically allocated
member. class IntCell!

{ !
 private:!
 int *storedValue;!
 public:!
 IntClass(int);!
 ~IntClass();!
 int read();!
 void write(int);!
};

cout << “Name” << name1 << endl;

IntCell::IntCell(int val) {!
 storedValue = new int;!
 *storedValue = val;!
} !
!
IntCell::~IntCell() {!
 delete storedValue;!
}

!11

deleting Dynamically Allocated
Objects

When is the storedValue deallocated?
#include "IntCell.h"!
!
int main() {!
!
 IntCell *icptr;!
 icptr = new IntCell(5);!
!
 cout << icptr->read() !
 << endl; !
!
 delete icptr;!
 !
 //...!
!
 return 0;!
}

cout << “Name” << name1 << endl;

This calls icptr->~IntCell() first, which
deletes (deallocates) icptr->storedValue.
Then it deallocates icptr.

#include "IntCell.h"!
!
int main() {!
!
 IntCell ic(5);!
!
!
 cout << ic.read() !
 << endl; !
!
 !
 !
 //...!
!
 return 0;!
}

ic.~IntCell() is called here, which
deletes (deallocates) ic.storedValue.
Then ic is destroyed.

!12

in 14.5 The this pointer

! this: a predefined pointer available to a class’s
member functions

! this always points to the instance (object) of
the class whose function is being executed.

! Use this to access member vars that may be
hidden by parameters with the same name:

Time::Time(int hour, int minute) { !
 // Time *this; implicit decl!
!
 this->hour = hour;!
 this->minute = minute;!
}

!13

this: an object can return itself

! Often, an object will return itself as the result of a
binary operation, like assignment:
!

! because associativity of = is right to left.
! But what is the result of (v2 = x)?
!

! It is the left-hand operand, v2.

cout << “Name” << name1 << endl;

v1 = v2 = x; v1 = (v2 = x);is equivalent to

v1 = v2 = x; v2 = x;!
v1 = v2;

is equivalent to !14

Returning this

cout << “Name” << name1 << endl;

class Time {!
! private:!
! int hour, minute;!
! public:!
! const Time operator= (const Time &right);!
};!
!
const Time Time::operator= (const Time &right) {!
 hour = right.hour;!
 minute = right.minute;!
 return *this;!
}!
!
Time time1, time2, time3(2,25);!
time1 = time2 = time3;!
cout << time1.display() << “ “!
 << time2.display() << “ “ !
 << time3.display() << endl;

Output:
2:25 2:25 2:25

