
Introduction to
Software Engineering

(Chapter 1)

1

What is Software?

• Wikipedia: Software is a collection of computer
programs (and related data) that provides the
instructions for telling a computer what to do and
how to do it.

• Does software include:
- Google chrome? MS Word? Mac OS X?
- An Excel spreadsheet?
- the source code program?
- the machine code version of the program?

• Software is executable.
2

8 different types of software
applications

1. Stand-alone applications
- Run on a local computer, such as a PC.
- Do not need to be connected to a network.

2. Interactive transaction-based applications
- Execute on a remote computer
- Accessed by users from their own computers.
- These include web apps such as e-commerce applications.

3. Embedded control systems
- Software systems that control and manage hardware

devices.
- Numerically, there are probably more embedded systems

than any other type of system.
3

8 different types of software
applications

4. Batch processing systems
- Business systems designed to process data in large batches.
- Process large numbers of individual inputs to create

corresponding outputs.

5. Entertainment systems
- Primarily for personal use
- Intended to entertain the user.

6. Systems for modeling and simulation
- Developed by scientists and engineers to model physical

processes or situations
- Include many, separate, interacting objects.

4

8 different types of software
applications

7. Data collection systems
- Collect data from their environment using a set of sensors.
- Send that data to other systems for processing.

8. Systems of systems
- Composed of a number of other software systems.
- Department of Defense applications

5

Two kinds of software products

• Generic products
- Stand-alone systems that are marketed and sold to anyone.
- Examples – Microsoft office, iPad apps, Angry birds, software for

specific markets: appointments systems for dentists.
- The developer organization decides what the software should do

• Customized products
- Software that is commissioned by a specific customer to meet

their own needs.
- Examples – embedded control systems, air traffic control

software, traffic monitoring systems.
- The customer decides what the software should do and how it

should be changed.

6

What is Software Engineering?

• Software engineering is an engineering discipline that is
concerned with all aspects of software production from
the early stages of system specification through to
maintaining the system after it has gone into use.

• Engineering discipline
- Using appropriate theories and methods to solve problems
- Bearing in mind organizational and financial constraints.
- “getting results of the required quality within the schedule and budget”

• All aspects of software production
- Not just technical process of development.
- Project management
- The development of tools, methods etc. to support software

production.

7

What is Software Engineering?

• Software engineering is a systematic approach to
the production of software that takes into
account practical cost, schedule, and
dependability issues, as well as the needs of
software customers and producers

8

Another definition from the textbook

Why do we need Software
Engineering?

• Without it, software tends to be unreliable and
more difficult to maintain (change).

• As size and complexity of software projects
increases, so do the number of failed projects.

• Software Project Failure.

• Software Product Failure.
9

Why do we need Software
Engineering?

• Software Project Failures.
- 1994 US Federal Aviation Administration

Advanced Automation System canceled after $2.6B spent

- 2002 McDonald’s Corp.
Innovative information-purchasing system cancelled after $170M
spent

- 2004 J Sainsbury PLC [UK]
Supply-chain management system abandoned after deployment
costing $527M

10

Why do we need Software
Engineering?

• Software Product Failures.
- Y2K problem

$300 B to fix code storing only 2 digits for the date

- 1994 Intel Pentium microprocessor
$475 M: error in chip causes error in floating point division

- 1996 Ariane 5 failure
Rocket crashes: reusing code for Ariane 4 causes overflow

- 1985-87 Therac-25 medical accelerator
5 patients die after receiving lethal doses of radiation

11

Why do Projects fail?
http://spectrum.ieee.org/computing/software/why-software-fails

• Unrealistic or unarticulated project goals

• Inaccurate estimates of needed resources

• Badly defined system requirements

• Poor reporting of the project's status

• Unmanaged risks

• Poor communication among customers, developers, and users

• Use of immature technology

• Inability to handle the project's complexity

• Sloppy development practices

• Poor project management

• Stakeholder politics

• Commercial pressures
12

Software engineering
processes address
many of these problems

Software Quality:
Essential attributes of good software

13

Product
characteristic

Description Example

Functional
Correctness

The software meets its specifications. It
is generally free of defects (bugs).

A calculator app always
gives the correct answer,
for every operation.

Maintainability Software is written in such a way so that
it is easy to change, to meet the
changing needs of customers.

Apple successfully
updates the Safari Web
browser to work with a
new version of Mac OS X.

Dependability Software dependability includes a range
of characteristics including reliability,
security and safety. Dependable software
should not cause physical or economic
damage in the event of system failure.
Malicious users should not be able to
access or damage the system.

Unauthorized users are
not able to access your
banking account in an
online banking app.

Software Quality:
Essential attributes of good software

14

Product
characteristic

Description Example

Efficiency Software should not make wasteful use
of system resources such as memory
and processor cycles. Efficiency
therefore includes responsiveness,
processing time, memory utilization, etc.

When you sort your
iTunes library using one of
the column headers, you
see the results almost
immediately.

Acceptability Software must be acceptable to the type
of users for which it is designed. This
means that it must be understandable,
usable and compatible with other
systems that they use.

Facebook privacy
controls: seem to change
often and are difficult for
users to understand.
(Negative example)

Case Studies

The following case studies are used for examples in
the book (see chapter 1 for background).

• A personal insulin pump
- An embedded system in an insulin pump used by diabetics

to maintain blood glucose control.

• A mental health case patient management system
- An information system used to maintain records of people

receiving care for mental health problems.

• A wilderness weather station
- A data collection system that collects data about weather

conditions in remote areas.

15

