
Agile Software
Development

Chapter 3

1

I. The problem with traditional
development processes

• Lengthy development times (one to five years)
- Product may be out of date before it is completed

• Lack of flexibility regarding requirements:
- Unable to cope with changing requirements
- Requirements must be completely understood upfront

• Too much reliance on heroic developer effort
- lots of overtime to finish on time

• Too much overhead
- complex methodology requires detailed specifications of

activities, detailed design documents, etc.
- Much information is maintained in multiple forms

2

The need for rapid software
development

• Changing business environments
- New opportunities and technologies
- Changing markets, new competitors

• Companies will trade off quality for faster deployment

• Requirements are never stable and hard to predict

• Traditional methods are inadequate in this context

• 1990’s: Agile processes were developed in response to
these problems.

3

II. What are agile processes?

• Form of incremental development:
- Very small increments (2-3 weeks)
- Customers evaluate versions

• Minimal process documentation
- Minimal user requirements documents
- Lack of detailed design specifications

• Focus on human and team aspects of software
development.

• Favor use of development tools:
- IDEs, UI development tools, etc.

4

Agile manifesto

• We have come to value:
- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract negotiation
- Responding to change over following a plan

• That is, while there is value in the items on
the right, we value the items on the left more.

• Website:

5

www.agilealliance.org

Some principles of agile processes

• Incremental Delivery
- small increments, rapid delivery
- working software is primary measure of success

• Customer Involvement, constant feedback

• People not process
- focus on informal communication

• Embrace Change
- expect change, design the process to accommodate it
- incremental design: delay design decisions as much as possible

• Maintain Simplicity
- minimal documentation, source code is the documentation
- in software and process, eliminate complexity

6

Some agile methods

• Extreme Programming (XP)

• Scrum

• Crystal methods

• Evo

• Adaptive Software Development

• Dynamic Solutions Delivery Model (DSDM)

• Feature Driven Development

• Agile modeling methods

• Agile instantiations of RUP

7

III. Extreme programming (XP)

• Best-known and most widely used agile method.

• Kent Beck, 2000

• Pushing recognized good practice to the extreme:
- More customer involvement is good so bring customers onsite.
- Code reviews are good, so do constant code reviews via pair

programming
- Testing is good, so write tests before writing the code.
- Short iterations and early feedback are good, so make

iterations only 1 or 2 weeks.

8

XP: 12 core practices

1. Planning Game(s)
- Major Release: Define scope, customer writes story cards
- Each iteration: customer picks cards, developers pick tasks

2. Small, frequent releases
- 1-3 weeks

3. System metaphors
- used to describe architecture in easily understood terms

4. Simple Design
- No speculative design, keep it easy to understand

9

XP: 12 core practices

5. Testing
- Automated, test-driven (test-first) development

6. Frequent Refactoring
- Cleaning code without changing functionality
- Keep the structure from degrading

7. Pair Programming
- One computer, one typist, other reviews, then swap
- Rotate (change) partners

8. Team Code ownership
- Any programmer can improve any code,
- Entire team is responsible for all the code.

10

XP: 12 core practices

9. Continuous Integration
- all checked in code is continually tested on a build machine

10.Sustainable Pace:
- No overtime, developers not overworked

11.Whole Team Together
- Developers and customer in one room, accessible

12.Coding Standards
- Adopt a common programming style

11

Requirements (The planning game)

• Story Cards
- Customer writes brief feature request.

• Task List
- Implementation tasks
- Written by Developer(s)
- After discussing story card with Customer

• Customer chooses the story cards to implement next

• Cards can be changed or discarded

• Requirements specification depends on oral
communication.

12

Requirements: example story cards

• From a flight-booking website

• Or if the scope of that is too large for an iteration,
break it down into several stories:

13

User needs to Find Lowest Fares

User needs to find lowest fares
for a one-way trip

User needs to find lowest fares
for a round-trip

User needs to find lowest fares
offered by a given airline

Task List example

• From the story card:

• List of Implementation Tasks
- Implement/modify fare schedule database
- Implement search for a flights/legs by date
- Implement search for multi-leg flight
- Add/modify GUI for user to access search
- Implement save itinerary for user
- etc.

14

User needs to find lowest fares
for a round-trip

XP and anticipating change

• Conventional wisdom:
Design for change by using very general designs.
- Claim: this reduces costs later in the life cycle.

• XP maintains: this is not worthwhile
- Changes cannot be reliably anticipated.

• XP proposes: Constant code improvement
(refactoring)
- make changes easier when they have to be implemented

15

Refactoring

• Restructuring an existing body of code, altering its
internal structure without changing its external
behavior

• Advantages:
- Easier to understand, easier to add new functionality

• Examples
- Breaking up a large class into two or more classes.
- Moving methods/functions to different classes.
- Renaming attributes and methods to make them easier to

understand.
- Replacement of inline code with a call to a method/function.

16

Testing in XP

• Test-first Development
- Tests are written before the task is implemented.
- Forces developer to clarify the interface and the behavior of the

implementation.
- Tests are based on user stories and tasks, one test per task.

• Customer involvement.
- Customer helps write tests, throughout development process.
- (traditionally customer testing occurs at the end of the project.)

• Test automation is crucial
- Testing is developer’s responsibility (no external test team)
- No interaction required: results checked automatically and reported.
- Automatic regression testing ensures no existing functionality gets

broken by a new increment or refactoring

17

Test-driven development

18

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

Implement
functionality or

debug

test should fail the first time.

Test driven development example

• Task: implement a Money class in Java
to support multiple currencies, adding money, etc.

• Developer writes a Money test class:
- Assumes: Money(int,string) constr, Money add(Money) method

19

public class MoneyTest extends TestCase {

 public void testSimpleAdd() {
 Money m1 = new Money(12,”usd”);
 Money m2 = new Money (14, “usd”);
 Money expected = new Money(26, “usd”);
 Money result = m1.add(m2);
 assertEquals (expected, result);
 }
}

Pair programming

• Programmers work in pairs at one workstation.
- One has control of the computer
- Other is “looking over their shoulder”
- take turns in each role

• Pairs change partners for different tasks.

• Advantages:
- Helps develop common ownership of code.
- Informal review process.
- Encourages refactoring.

• How productive is it?
- Results vary, hard to measure full effect.

20

Project management

• What is Project Management?
- job of ensuring software is delivered on time within the budget.

• In traditional processes the project manager
decides:
- what should be delivered,
- when it should be delivered and
- who will work on the development of the project deliverables

• This approach does not work for Agile projects.
- “what should be delivered” is not known up front
- change is the norm
- But agile projects still need to make good use of resources

21

IV. Agile versions of UP

• Unified Process is a hybrid process, and can be
instantiated in different ways

• How to make a more agile instantiation of UP:
- restrict the required work products (artifacts)
- eliminate/merge some of the roles
- add more customer involvement in the iterations

• The following paper discusses this approach:

22

Michael Hirsch. 2002. Making RUP agile. In OOPSLA 2002 Practitioners Reports
(OOPSLA '02). ACM, New York, NY, USA, 1-ff. DOI=10.1145/604251.604254
http://doi.acm.org/10.1145/604251.604254

V. Scrum

• A set of project management values and practices.
- Easy to combine with other agile methods

• Hands-off approach:
- No project manager or team leader (only a scrum master)
- Team is empowered to make own decisions

• Consists of roles, events, and artifacts

• Iterations are called sprints
- one month or less
- time-boxed: duration is constant, features are dropped to meet

the deadline.

23

Scrum: roles

• Product owner
- represents the voice of the customer

• Development team
- 3 to 10 developers who produce the software

• Scrum master
- keeps team on track, makes sure Scrum is followed
- Makes sure team is not interrupted, resolves blocks
- intermediary between developers and management/stakeholders

• Stakeholders and Managers
- Stakeholders: customers/users/etc.
- Managers development organization administrators

24

Scrum: events

• Sprint planning meeting
- Scrum team and product owner meet to decide what will be

implemented in the next sprint

• Daily scrum
- Stand-up meeting, 15-20 minutes
- Each member gives progress report, future plans, and problems

• Sprint review
- held at end of sprint
- product demo by developers, answer questions
- entire team decides what to do next

• Sprint retrospective (after sprint review)
- team members discuss what they learned from sprint review

25

Scrum: artifacts

• Product backlog
- ordered list of all remaining requirements
- prioritized by product owner

• Sprint backlog
- ordered list of tasks that need to be done for current sprint
- short (4-16 hours), chosen by developer

• Increment
- sum of all requirements implemented so far (the release)

• Burn down chart
- frequently updated, publicly displayed chart
- shows remaining work from sprint backlog

26

VI. Choosing a process

• No process fits all projects.

• Must adjust the process to
- the project
- the organizational culture
- the people participating in it

• Requires being familiar with
- the characteristics of the project (size, stability of

requirements, criticality of requirements).
- the characteristics of the development organization.

27

Risks/disadvantages of agile processes

• Difficult to scale agile methods to large systems
- Agile methods better suited to small teams

• Heavy reliance on teamwork
- Not all people are able to work well in teams

• Reliance on frequent access to customer
- May be too expensive to have customer onsite (travel)
- Large project may require too many customer representatives

• Cultural clash
- Many XP practices clash with formal processes and management

techniques.

• Not well-suited for security- or safety-critical systems
- These depend on thorough analysis and documentation

28

Advantages of agile processes

• Efficient handling of changes to requirements

• Low process complexity
- (relatively) easy to implement

• Low cost and overhead
- Most activities directly produce quality software

• Fast results (rapid development)
- Short iterations, core system produced up front
- Produce final results faster

• Usable systems
- Final system is more likely to be Acceptable, due to customer

involvement and quick response to changes.
29

