
Requirements
engineering

Chapter 4

1

I. What are requirements?

• Sommerville:
The descriptions of what the system should do:

- the services that the customer requires
- the constraints on its operation

• IEEE standard glossary of software engineering
terminology

- A condition or capability needed by a user to solve a problem
or achieve an objective.

• (Wiegers, Software Requirements 2): A property that a
system must have to provide value to a stakeholder

2

“the system” = the software system to be developed

Levels of requirements specification
(in order of increasing detail)

• Business Requirements
- High level goals of the stakeholders for the system
- Provides vision and scope

• User requirements
- Tasks the users must be able to perform with the system.
- Expressed in natural language and diagrams

• System requirements
- The system’s functions, services and constraints described in

even more detail.
- Exactly what the developers must implement

❖ Must have enough detail for the developers to know how to
implement them.

3

Example: User and system level requirements

4

SYSTEM LEVEL:
1. The system shall provide a way for the user to enter the name of the

league
2. The system shall verify that the league name is unique among all the

leagues. If not, the system shall ask the user to re-enter (or cancel).
3. The system shall provide a way for the user to enter a password in order to

set the password for the league.
4. If the password does not meet the password requirements, the system

shall ask the user to re-enter (or cancel to exit).
5. The system shall prompt the user for a time and date for the draft
6. The date must occur at least 24 hours before the first game of the regular

season (and sometime after the current time). If the date does not meet
this criteria, the system shall prompt the user to reenter (repeat until there
is a valid date) or cancel.

Task: Set up a league for a Fantasy Football website

USER LEVEL:
This function allows a user to set up a league that other players may join.
The user who sets up the league is called the league manager, and decides
who is able to join the league, and when the league draft will occur.

Functional vs. non-functional
requirements

• Functional requirements
- Specific functions or services the system must provide.
- How the system reacts to certain inputs (behavior)
- Software functionality that the developers must build into the

product to enable users to accomplish their tasks.

• Non-functional requirements
- Constraints on the functions and services offered by the

system.
- These often apply to the system as a whole rather than

individual features or services.
- How the system must function.
- Example: performance, security, or availability requirements.

5

Example: Functional requirements
(user level)

1. The system shall generate each day, for each
clinic, a list of patients who are expected to attend
appointments that day.

2. A user shall be able to search the appointments
lists for all clinics.

3. Each staff member using the system shall be
uniquely identified by his or her 8-digit employee
number.

6

for a system used to maintain information about patients
receiving treatment for mental health problems.

Different types of Non-functional
requirements

• Performance and space goals

• Descriptions of quality attributes, including:
- reliability
- security
- usability

• Design and implementation constraints:
- must run on certain platform or operating system
- must be written in a certain programming language

7

Sources of non-functional requirements

8

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Legislative
requirements

Operational
requirements

Development
requirements

Environmental
requirements

Safety/security
requirements

Accounting
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

Examples of nonfunctional
requirements

9

Product(requirement
The$system$shallbeavailabletoall$clinics$during$normal$working$hours$
(Mon–Fri,$08.30–17.30).$DownDme$within$normal$working$hours$shall$
not$exceed$five$seconds$inanyone$day.

Organiza2onal(requirement
Usersofthe$system$shall$authenDcate$themselves$using$their$health$
authority$idenDty$card.

External(requirement
The$system$shall$implement$paDent$privacy$provisionsassetoutin$
HStanL03L2006Lpriv.$

Consequences of Non-functional
requirements

• Non-functional requirements may be more critical to
the success of the project than functional
requirements.

• A single non-functional requirement, such as a
security requirement, may generate a number of
related functional requirements that define required
system services.

• A non-functional requirement may impose
restrictions on some functional requirements.

• Implementation of a non-functional requirement may
influence choices of software architecture.

10

Characteristics of excellent requirements

• Correct
- Each requirement must reflect actual needs of the stakeholders (no gold plating).

• Unambiguous
- Each requirement must have only one possible interpretation.

• Complete
- All services required by the users must be defined (no requirements are missing)
- Each requirement must fully describe the functionality to be delivered.

❖ It must contain all the information necessary for the developer to design and
implement that bit of functionality.

• Consistent
- There should be no conflicts or contradictions among the requirements

• Verifiable
- Each requirement must be written in a way so that the completed system could

be tested against it.

11

Ambiguous requirements

• Capable of being interpreted in different ways by
different people (it has more than one interpretation).

• Consider this functional requirement from a previous
example:

A user shall be able to search the appointments lists
for all clinics.

- User intention – given a name as input, search across all
appointments in all clinics;

- Developer interpretation – given a name and a clinic as inputs,
search in the individual clinic only.

12

 Verifiable requirements

• [non-verifiable] The system should be easy to use
by medical staff and should be organized in such a
way that user errors are minimized.

- problems: “easy to use” cannot be measured or
tested, and how many errors are acceptable?

• [verifiable] Medical staff shall be able to use all the
system functions after four hours of training. After
this training, the average number of errors made
by experienced users shall not exceed two per
hour of system use.

13

Metrics for specifying
nonfunctional requirements

• Nonfunctional requirements in particular are difficult to write so
that they are verifiable.

• A few examples of useful metrics from Table 4.5:

14

Property Measure

Speed Processed$transacDons/second
User/event$response$Dme

EaseofUse Training$Dme

Reliability MeanDmeto$failure
Rateoffailure$occurrence

II. The software requirements document

• Software Requirements Specification (SRS)
- Official statement of
- What will be implemented

• Should include:
- User requirements
- Detailed system requirements
- Including functional and non-functional requirements

• It is NOT a design document.
- Should not indicate HOW the features will be implemented

15

Software Requirements Doc Users/Uses

• Set of users (readers):
- Customers/Users
- Project managers
- Developers
- Test engineers
- Technical writers
- Maintenance engineers

• Uses:
- Understand scope of system
- Project planning
- Design and implementation
- System testing
- User documentation
- Bug fixing (correctness), adding new features (consistency), etc.

16

Requirements document variability

• Level of detail, length, and format depends on:
- Type of system being developed (interactive, embedded, etc)
- Size of system
- Development process used (waterfall vs agile)
- Presence of safety-critical features (=> formal notation)

• Incremental development => Incremental SRS.
- Revise the SRS at beginning of each iteration
- Once it is reviewed and approved it becomes the Baseline

SRS
- Must have a Baseline SRS for each iteration/cycle
- Changes to the Baseline during development must have

special approval

17

IEEE Standard: SRS template

18

Table of Contents
1. Introduction

1.1. Purpose
1.2. Scope
1.3. Definitions, acronyms, and

abbreviations
1.4. References
1.5. Overview

2. Overall Description
2.1. Product perspective
2.2. Product functions
2.3. User characteristics
2.4. Constraints
2.5. Assumptions and

dependencies
2.6. Apportioning of

Requirements

3. Specific Requirements
3.1.External Interface

Requirements
3.2.Functional Requirements
3.3.Performance Requirements
3.4.Logical Structure of the Data
3.5.Design Constraints
3.6.Software System Attributes

Appendices
Index

IEEE Std 830-1998 (on TRACS)

SRS writing: good practices

• Label sections, subsections, requirements consistently
- Don’t ever renumber/relabel requirements
- Use sequential numbers OR
- Hierarchical numbers or labels (1.1.2.3 or ship.table.col.sort)

• Use “TBD” as a placeholder for missing info
- Resolve these before accepting as baseline SRS

• Cross reference other documents (avoid duplication)

• User interface elements
- Don’t include screenshots in SRS (they are design specifications)

• See “Sample SRS” on the website: it is a poor
example, we will fix some of it.

19

III. Requirements engineering
processes

20

Validation

What is requirements engineering?

• The process of
- finding out
- analyzing
- documenting
- and checking

the required services and constraints of the
system to be developed

• Result: software requirements specification
document.

• This is the traditional approach to handling
requirements.

21

(elicitation)

(analysis)

(specification)

(validation)

Actors in Requirements Development

• Requirements Analyst (or Requirements Engineer)

- Work with customers to gather, analyze, and
document requirements

- Developer may work in this role

• Stakeholders

- customers, end users, legal staff

- may include members of developer organization

22

Stakeholders in MHC-PMS

• Patients whose information is recorded in the system.

• Doctors who are responsible for assessing and treating patients.

• Nurses who coordinate the consultations with doctors and administer
some treatments.

• Medical receptionists who manage patients’ appointments.

• IT staff who are responsible for installing and maintaining the system.

• A medical ethics manager who must ensure that the system meets
current ethical guidelines for patient care.

• Health care managers who obtain management information from the
system.

• Medical records staff who are responsible for ensuring that system
information can be maintained and preserved, and that record keeping
procedures have been properly implemented.

23

1 Requirements Elicitation

• What is the goal of this discipline?

Identify needs and constraints of stakeholders

• What methods are used to carry it out?
- Interviews: analysts meet with stakeholders one on one
- Elicitation workshops: panel or forum of stakeholders
- Ethnography: observation/immersion in user environment

• What are some tools that the requirements analyst
can use?
- Scenarios: specific stories that describe specific interactions
- Use Cases: generalized descriptions of interactions

24

Scenarios and Use cases

• What is a scenario?
- Description of one (or more) specific interaction(s) between a

specific user and the system
- A narrative, a story, in language the user understands

• What is a use case?
- Description of a single general interaction of an actor (or role)

with the system.
- Includes all alternatives that may occur during the interaction

• What is a use case diagram?
- Consists of an actor (stick figure) and the name of the use

case in an oval
- Description of each use case is documented elsewhere

25

Scenario for “collecting medical history”
in MHC-PMS

26

John, the patient, meets with Rita the receptionist.
Rita searches for John's record in the system by family name ("Doe").
There's already a Doe in the system so she uses his first name and
birthdate to find his record.
Rita chooses to add medical history to John's record.
Rita follows the prompts from the system and enters information
about John's previous consultation with a psychiatrist that he had
because he had been feeling suicidal. She also enters information
about his existing medical conditions (he has diabetes) and the
medication he is currently taking (Metformin). He has no allergies, so
she leaves that blank. She fills in information about his home life (he is
single, recently divorced, living alone).
John's record is then entered into the database, and this fact is
recorded into the system log showing the start and end time of the
session and Rita's name.

Use case for “collecting medical history”
in MHC-PMS, page 1

27

Initial assumption: The patient has seen a medical receptionist who has already
created a record in the system containing his/her personal information (name,
address, age, etc.). A nurse is logged into the system.

Normal Interaction:
 The nurse searches for the patient by family name. If there is more than one patient
with the same surname, the first name and date of birth are used to identify the
patient.

The nurse chooses an option to add medical history.

The nurse then follows a series of prompts from the system to enter information
about consultations elsewhere on mental health problems (free text input), existing
medical conditions (selected from a list), medication currently taking (selected from a
list), allergies (free text) and home life (filling out a form).

Use case for “collecting medical history”
in MHC-PMS, page 2

28

What can go wrong:
The patient's record cannot be found: The nurse should create a new record
containing the patient's personal information.

The patient conditions or medication are not on the list: The nurse should choose
the 'other' option and describe the condition/medication (free text).

The patient cannot/will not provide information on medical history: The nurse
should enter a description of the patient's inability/unwillingness to provide
information. The system should print the standard exclusion form stating that the
lack of information may mean that treatment will be limited or delayed. This should
be signed by the patient, and a copy given to the patient.

Other activities:
Record may be consulted but not edited by other staff members while information
is being entered.

System state on completion: The patient record, including the medical
history is entered into the database. This fact is recorded in the system log, along
with the start and end time of the session and the name of the nurse involved.

Use case diagrams

• Use Case: overview of one user/system interaction
- Focused on one goal of an actor

• Use Case Diagram components:
- stick figure: actor (user or external system)
- ellipse: named interaction (verb-noun phrase)
- line: indicates involvement in interaction

• Diagram is supplemented with further details
describing the use case (see previous 2 slides).

• Composite use case diagram:
- all interactions involving a given actor or
- all interactions of the whole system

29

Use case diagram for the MHC-PMS

30

Nurse

Medical receptionist
Manager

Register
patient

View
personal info.

View record

Generate
report

Export
statistics

Doctor
Edit record

Setup
consultation

Each oval represents a single use case (goal).
Each one should also have a textual description.

Collect
medical history

2 Requirements Analysis

• What is the goal of this discipline?

Develop good quality, detailed requirements
(by refining and organizing them)

• What methods are used to carry it out?
- Organizing requirements into groups

- Modeling: represent requirements in a model, refine models that
were developed in elicitation
๏ use case diagram: to track completeness

- Prototypes: use to clarify and explore requirements with users

31

3 Requirements Specification

• What is the goal of this discipline?

Document the collected user needs and
constraints in a consistent and accessible format

- Carefully record requirements in a repository (document)

• What format can the specifications take?
- Natural language sentences
- Structured specifications (forms/templates)
- Graphical notations (UML diagrams, etc.)
- Mathematical specifications: clear, but not universal

32

Natural language specification

• Natural language is expressive, intuitive and universal.
- The requirements can be understood by users and customers.

• Natural language is vague and ambiguous.
- Assumed meaning often depends on the background of the

reader.

• What are good guidelines for writing specifications in
natural language?
- Use a standard format (see next page)
- Use active voice (the system shall ...)

33

Example requirements
for the insulin pump software system

34

3.2Thesystem$shall$measuretheblood$sugar$and$deliver$insulin,if
required,$every$10$minutes.!(Changes!in!blood!sugar!are!rela1vely!
slow!so!more!frequent!measurement!is!unnecessary;!less!frequent!
measurement!could!lead!to!unnecessarily!high!sugar!levels.)

3.6Thesystem$shall$runaselfLtest$rouDne$every$minute$withthe
condiDonstobe$tested$andtheassociated$acDons$definedinTable$1.!
(A!self>test!rou1ne!can!discover!hardware!and!so?ware!problems!
and!alert!the!user!to!the!fact!the!normal!opera1on!may!be!
impossible.)

• These are user requirements
• Each is one sentence, along with a “rationale” statement

Structured specifications

• An approach to writing requirements using templates
to write them in a standard way.

• For example, have entries for:
- Name and description of the function or entity.
- Description of inputs and where they come from.
- Description of outputs and where they go to.
- Description of the action to be taken.
- Information about the information needed for the computation

and other entities used.
- Pre and post conditions (if appropriate).
- The side effects (if any) of the function.

• Works well for some types of requirements but is often
too rigid for writing business system requirements.

35

A structured specification of a requirement
for an insulin pump (p1)

36

Insulin Pump/Control Software/SRS/3.3.2Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: safe sugar level.

Description
Computes the dose of insulin to be delivered when the
current measured sugar level is in the safe zone between
3 and 7 units.

Inputs Current sugar reading (r2); the previous two readings (r0
and r1).

Source Current sugar reading from sensor. Other readings from
memory.

Outputs CompDose—the dose in insulin to be delivered.

Destination Main control loop.

A structured specification of a requirement
for an insulin pump (p2)

37

Action

CompDose is zero if the sugar level is stable or falling or if the
level is increasing but the rate of increase is decreasing. If the
level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between
the current sugar level and the previous level by 4 and
rounding the result. If the result, is rounded to zero then
CompDose is set to the minimum dose that can be delivered.

Requirements Two previous readings so that the rate of change of sugar
level can be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed
single dose of insulin.

Post-condition r0 is replaced by r1 then r1 is replaced by r2.

Side effects None.

• This is a system requirement

4 Requirements Validation
• What is the goal of this discipline?

Ensure requirements demonstrate desired
quality characteristics

• What are the desired characteristics?
- See slide 11, or IEEE STD 830

• What methods are used to carry it out?
- Requirements reviews (inspections): stakeholders and

developers formally analyze requirements
- Test case generation: can reveal problems in requirements:

ambiguity, vagueness, omissions

• How successful is this process?
- Somewhat, it’s a very difficult problem.

38

5 Requirements Management

• Problem: the requirements specification
document will need to change after development
begins.

- Errors may be found in the requirements
- Users’ needs change
- Business needs change

• What are the effects of changing the set of
requirements during development?

- Rewrite part of the requirements specification doc
- Rework: re-do design and implementation, if already

started.

39

Requirements Management

• Who should decide what changes should be accepted?
- Developers?
- Customers/Users?
- Project managers?
- Requirements Analyst?

• Change Control board
- Made up of representatives from groups listed above.

• How do they decide?
- change is proposed, validated against existing requirements
- proposal is evaluated for impact and cost
- if approved, requirements doc, design and implementation are

updated

40

