
Software Testing
!
!

Chapter 8

!1

Verification and Validation
Outline

!

• Part 1: Concepts

• Part 2: Testing Process

• Part 3: Deriving test cases

!2

Part 1: Concepts

!

• Verification and Validation

• Static and dynamic verification

• Failure, Fault, Test case, Testing

• Black-box and white-box testing

• Test stubs and drivers

!3

Verification and Validation

• Verification:
- The software should conform to its specification  

(the functional and non-functional requirements). 
 
 "Are we building the product right”.

• Validation:
- The software should do what the customer really

requires. 
 
 "Are we building the right product”.

!4

Requirements don’t always reflect real wishes and needs
of customers and users

Verification Techniques

• Static verification
- Inspections, reviews
- Analyze static system representations to discover

problems
- Applies to: specifications, design models, source code,

test plans

• Dynamic verification
- Testing
- The system is executed with simulated test data
- Check results for errors, anomalies, and data regarding

non-functional requirements.

!5

Verification Techniques

!6

UML design
models

Software
architecture

Requirements
specification

Database
schemas Program

System
prototype Testing

Inspections

Verification at different stages in the software process

Testing Concepts

• Failure
- Deviation between the specification and the actual

behavior of the system.

• Fault (aka “bug” or “defect”)
- A design or coding mistake that may cause abnormal

behavior (with respect to specifications)

• Test case
- set of inputs and expected results that exercises a

system (or part) with the purpose of detecting faults

• Testing
- the systematic attempt to find faults in a planned way in

the implemented software.
!7

Test cases

Test cases should contain the following:

• Name
- Explains what is being tested

• Input
- Set of input data and/or commands and/or actions

• Expected results
- Output or state or behavior that is correct for the given

input.

!8

Black-box and White-box testing

Different kinds of test cases:

• Black-box tests
- focus on input/output behavior of the software
- are not based on how the software is structured or

implemented.

• White-box tests:
- focus on the internal structure of the software
- an internal perspective of the system is used to design

test cases.
- goal: test all parts of code in the software

!9

Test stubs and drivers

How to test units/components in isolation:

• test driver
- code that simulates the part of the system that calls the

component under test.
- often provides the input for a given test case
- this code is in a function that is executed during the test

• test stub
- code that simulates a component that is called by the

tested component
- must support the called component’s interface, and return

a value of the appropriate type.

!10

Part 2: Testing Process

• Development Testing
- Unit testing
- Component testing
- System testing

• Release Testing

• User Testing
- Alpha testing
- Beta testing
- Acceptance testing

!11

Testing Process

For each kind of testing activity we group them
based on:

• Who performs the tests?
- Developers, independent testing team, users+customers

• What are the constraints of the tests?
- test a certain part of the system?
- test the system at a certain point in the process?

!12

Software testing activities:
Who performs the test?

• Development testing:
- developers test the system during development

• Release testing:
- a separate testing team tests a complete version of the

system before it is released to users.

• User testing:
- Customers and users (or potential users) of a system

test the system in their own environment.

!13

Development testing
Which parts are tested?

• Unit testing
- individual program units (i.e. classes) are tested

• Component testing
- system components (composed of individual units) are

tested to make sure the contained units interact
correctly.

• System testing
- the system components are integrated and the system

is tested as a whole.

!14

Unit testing

• Unit testing:
- individual program units are tested in isolation
- focus is on testing functionality of the units

• Goal: complete test coverage of a class:
- Testing all operations associated with an object
- Setting and interrogating all object attributes
- Exercising the object in all possible states

• Why focus on such small units?
- reduces complexity of overall test activities
- makes it easier to pinpoint faults
- different objects can be tested concurrently

!15

Component testing

• Component testing
- System components (composed of individual units) are

tested to make sure the units interact correctly.
- The functionality of these objects is accessed through the

defined component interface.

• Component testing is demonstrating that the
component interface behaves according to its
specification.
- Assuming the subcomponents (objects) have already been

unit-tested

!16

Interface (component) testing

!17

Small empty boxes represent the interface

B

C

Test
cases

A

System testing

• System testing
- the components in a system are integrated and the

system is tested as a whole.

• Checks that:
- components are compatible,
- components interact correctly
- components transfer the right data at the right time

across their interfaces.

• Tests the interactions between components.

!18

Release testing

• Release Testing
- testing a particular release of a system that is intended for

use outside of the development team.

• Similar to system testing, but
- Tested by a team other than developers.
- Focus is on demonstrating system meets requirements.

• Primary goal: convince the supplier of the system
that it is good enough for use.

• Black-box testing process where tests are derived
from the system specification.

!19

User testing

• User testing:
- Customers and users (or potential users) of a system test

the system in their own environment.

• Essential even when comprehensive system and
release testing have been carried out.
- Influences from the user’s working environment have a

major effect on the reliability, performance, usability and
robustness of a system.

- These cannot be replicated in a testing environment.

!20

Types of user testing

!21

• Alpha testing
- Users of the software work with the development team to test

the software at the developer’s site.
- generic or custom software

• Beta testing
- A release of the software is made available to users to allow

them to experiment and to report problems
- generic or custom software

• Acceptance testing
- Customers test a system to decide whether or not it is ready to

be accepted from the system developers.
- acceptance implies payment is due, may require negotiation.
- custom software.

Part 3: Deriving Test Cases

• Unit Testing
- Partition testing (Equivalence Class Partitioning)
- Boundary value analysis
- Path testing (Path Analysis)
- State-based testing
- Guideline-based testing

• System + Release Testing
- Use case-based testing
- Scenario testing
- Requirements-based testing

!22

Unit testing:
How are test cases developed?

• Partition (or equivalence) testing:
- identify groups of inputs that have common characteristics and should

be processed the same way by the system, use one test case per group.

• Boundary value analysis
- test the boundaries of the groups used in partition testing

• Path testing
- exercise all possible paths through the code at least once

• State-based testing
- define sequences of events to force all possible transitions.

• Guideline-based testing
- use guidelines that reflect the kinds of errors programmers often make

!23

Partition testing

• Divide the set of all possible input data of a
software unit into partitions
- program should behave similarly for all data in a given

partition
- Determine partitions from specifications

• Design one test case for each partition, using
sample input data from the given partition.

• Enables good test coverage with fewer test cases.

!24

Partition testing: example

Function returning the number of days in a month:

!25

int getNumDaysInMonth(int month, int year);

Partition month value year value

Month with 31 days, non-leap years 7 (July) 1901

Months with 31 days, leap years 7 (July) 1904

Months with 30 days, non-leap years 6 (June) 1901

Month with 30 days, leap year 6 (June) 1904

Month with 28 or 29 days, non-leap year 2 (February) 1901

Month with 28 or 29 days, leap year 2 (February) 1904

Boundary value analysis

• When the partitions correspond to ranges of
values,
- programming errors often occur at the boundaries

between the partitions
- confusion over which partition the boundary value

belongs to

• Choose test case values on boundary, and/or on
either side.

• Example:

!26

Ages Partition test Boundary value

0-18 9 0, 18

19-50 25 19,50

>50 75 51

Path testing

• Exercise all possible paths
through the code at least once
- a white-box testing technique
- convert code to control-flow

diagram
- choose input data so that each

path through diagram is executed

!27

Example: Make sure that at least one
test case forces each oval to execute:
• one with valid password that requires

no change
•one with invalid password, then valid

password that requires a change

State-based testing

• Define sequences of events to force all possible
transitions in a UML state diagram
- Identify sequences of state transitions to be tested
- Write test cases using input data or commands that

generate the event sequences to cause these transitions.
- Verify that the program ends up in the expected state.

• sequences from the diagram on the next slide:
- Shutdown -> Running-> Shutdown
- Configuring-> Running-> Testing -> Transmitting ->

Running
- Running-> Collecting-> Running-> Summarizing ->

Transmitting -> Running

!28

State-based testing: example
(weather station)

!29

Shutdown -> Running-> Shutdown is tested with a
call to restart() followed by a call to shutdown(),
then check the state

transmission done

remoteControl()

reportStatus()restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting
Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

Guideline-based testing

• Choose test cases based on previous experience of
common programming errors

• For example:
- Choose inputs that force the system to generate all error

messages
- Repeat the same input or series of inputs numerous times
- Try to force invalid outputs to be generated
- Force computation results to be too large or too small.
- Test sequences/lists using

✦ one element
✦ zero elements
✦ different sizes in different tests

!30

System and Release testing:
How are test cases developed?

• Use case-based testing:
- use the use-cases developed during requirements

engineering to develop test cases.

• Scenario testing
- use scenarios (user stories) developed during

requirements engineering to develop test cases.

• Requirements-based testing
- examine each requirement in the SRS and develop one or

more tests for it.

!31

Use case-based testing: example

!32

Use case name PurchaseTicket

Entry condition The Passenger is standing in front of ticket Distributor.
The Passenger has sufficient money to purchase ticket.

Flow of events

1. The Passenger selects the number of zones to be traveled. If the
Passenger presses multiple zone buttons, only the last button
pressed is considered by the Distributor.

2. The Distributor displays the amount due.
3. The Passenger inserts money.
4. If the Passenger selects a new zone before inserting sufficient

money, the Distributor returns all the coins and bills inserted by
the Passenger.

5. If the passenger inserted more money than the amount due, the
Distributor returns excess change.

6. The Distributor issues tickets.
7. The Passenger picks up the change and the ticket.

Exit condition The Passenger has the selected ticket.

Developing the test from the use case:

• The PurchaseTicket use case describes the normal
interaction between the Passenger actor and the Distributor.

• Three features of the Distributor are likely to fail and should
be tested:

1. The Passenger may press multiple zone buttons before inserting
money, in which case the Distributor should display the amount of the
last zone.

2. The Passenger may select another zone button after beginning to insert
money, in which case the Distributor should return all money inserted by
the Passenger.

3. The Passenger may insert more money than needed, in which case the
Distributor should return the correct change.

!33

Purchase Ticket use case test case

!34

Test case name PurchaseTicket_Common Case

Entry condition The Passenger is standing in front of ticket Distributor.
The Passenger has two $5 bills and three dimes.

Flow of events

1.The Passenger presses in succession the zone buttons 2, 4, 1, and 2.
2.The Distributor displays in succession $1.25, $2.25, $0.75, and $1.25.
3.The Passenger inserts a $5 bill.
4.The Distributor returns three $1 bills and three quarters and issues a 2-

zone ticket.
5.The Passenger repeats steps 1-4 using his second $5 bill.
6.The Passenger repeats steps 1-3 using four quarters and three dimes.

The Distributor issues a 2-zone ticket and returns a nickel.
7.The Passenger selects zone 1 and inserts a dollar bill. The Distributor

issues a 1-zone ticket and returns a quarter.
8.The Passenger selects zone 4 and inserts two $1 bills and a quarter. The

Distributor issues a 4-zone ticket.
9.The Passenger selects zone 4. The Distributor displays $2.25. The

Passenger inserts a $1 bill and a nickel, and selects zone 2. The
Distributor returns the $1 bill and the nickel and displays $1.25.

Exit condition The Passenger has three 2-zone tickets, one 1-zone ticket, and one 4-zone
ticket.

Scenario testing

• A scenario is a story that describes one way in
which the system might be used
- Longer than an “interaction”

• To use a scenario for release testing:
- tester assumes role of user, acting out scenario
- may make deliberate mistakes (as part of the scenario)
- takes note of problems (slow response, errors, etc.)

• Tests several requirements and interactions at
once, in combination.

• See example in book: Figure 8.10, section 8.3.2

!35

Requirements-based testing

• Example requirements from MHC-PMS system:  

1. If a patient is recorded as being allergic to any particular
medication, then prescription of that medication shall result
in a warning message being issued to the system user. 

2. The system shall allow the prescriber to override an allergy
warning by providing a reason why this has been ignored
and the prescription will succeed. If no reason is provided,
the prescription will fail.

!36

Requirements-based testing

!37

Some tests developed to test the previous requirement: 

1. Set up a patient record with no known allergies. Prescribe
medication for allergies that are known to exist. Check that a
warning message is not issued by the system, and that the
prescription succeeds.

2. Set up a patient record with a known allergy. Prescribe the
medication to that the patient is allergic to, and check that the
warning is issued by the system. Accept the warning and make
sure the prescription fails.

3. Set up a patient record with a known allergy. Prescribe the
medication to that the patient is allergic to, and check that the
warning is issued by the system. Provide a reason overruling the
warning and make sure the prescription succeeds.

