
Detailed Design
!
!

(Chapter 7)

���1

Software Design

• Process of converting the requirements into the
design of the system.

• Definition of how the software is to be structured or
organized.
!

• For large systems, this is divided into two parts:
- Architectural design defines main components of the system

and how they interact.
- Detailed design components are decomposed and described

at a much finer level of detail.

���2

Design and Implementation

• Software Design:
- Creative activity, in which you:
- Identify software components and their relationships
- Based on requirements.

• Implementation is the process of realizing the design
as a program.

• Design may be
- Documented in UML (or other) models
- Informal sketches (whiteboard, paper)
- In the programmer’s head.

• How detailed and formal it is depends on the process
that is in use.

���3

Design Processes

• Functional Decomposition
- aka: Top down design

• Relational Database Design

• Object-oriented design and UML
- class diagrams
- state diagrams
- etc.

• [User Interface design]

���4

Functional Decomposition

• Used in structural programming  
(aka procedural programming)
- Start with a “main module”
- Repeatedly decompose into sub-modules.
- Lowest level modules can be implemented as functions.

• Can be used in Object-oriented design
- to do initial decomposition of a system
- to decompose methods that are particularly hard to

implement.

���5

• Design a system for managing course
registration and enrollment.

• Requirements specify four tasks
- add, modify and delete students from the database
- add, modify and delete courses from the database
- add, modify, and delete sections for a given course
- register and drop students from a section.

• Main module divided into four submodules
(students, courses, sections, registration)

• Decompose each into its tasks.

���6

Functional Decomposition: example
student registration system

Functional Decomposition: example
student registration system

���7

Relational Database Design

• Many software systems must handle large
amounts of data

• Data is stored in tables
- row corresponds to an object or entity
- columns correspond to attributes of the entities
- (basically an array of structs)

• Structured Query Language (SQL), a set of
statements that
- create the tables
- add and modify data in the tables
- retrieve data that match specified criteria

���8

Relational Database Design

• Database design concentrates on
- how to represent the data of the system, and
- how to store it efficiently

• Data modeling
- create a model showing the entities with their attributes, and how

the entities are related to each other

• Logical database design
- maps the model to a set of tables
- relationships are represented via attributes called foreign keys

• Physical database design
- deciding on types of attributes, how tables are stored, etc.

���9

Relational Database Design

• Data modeling: ER diagram
- Entities: rectangles
- Attributes: ovals
- Relationships: diamonds

• Identifier
- attribute that has a unique value for each entity (underlined)

• Multi-valued attribute
- can have several values at one time (double oval)
- i.e. email addresses,

���10

Relational Database design: ER diagram
student registration system

���11

Student registration system: tables

���12

Course Number is a
foreign key, used to
implement the
“Belongs” relationship

Student ID is a
foreign key,
used to implement
the multi-valued
attribute

Object-oriented design

• Object-oriented system is made up of interacting
objects
- Maintain their own local state (private).
- Provide operations over that state.

• Object-oriented design process involves
- Designing classes (for objects) and their interactions.

• Previous to the design phase:
- Requirements are usually expressed using use cases

and use case diagrams.
- Preliminary class diagrams have often been produced

during requirements analysis.

���13

1 Requirements elicitation

• Client and developers define the purpose of the
system:
- Develop use cases
- Determine functional and non-functional requirements

• Major activities
- Identifying actors.
- Identifying scenarios.
- Identifying use cases.
- Refining use cases.

���14

Use case diagrams

2 Object Oriented Analysis

• Developers aim to produce a model of the
system
- Model is a class diagram
- Describing real world objects (only)

!

• Goal: transform use cases to objects

• Major activities
- Identifying objects: entities from the real world

❖ Look for nouns in use cases
- Drawing the class diagram, with relationships
- Drawing state diagrams as necessary

���15

3 System Design (architecture)

• Developers decompose the system into smaller
subsystems

!

!

• Major activities
- Identify major components of the  

system and their interactions (including interfaces).
❖ Use architectural patterns

- Identify design goals (non-functional requirements)
- Refine the subsystem decomposition to address design goals

���16

 4 Object Design

• Developers complete the object model by adding
implementation classes to the class diagram.

!

!

• Major activities
- Interface specification: define public interface of objects
- Reuse:

❖ frameworks, existing libraries (code)
❖ design patterns (concepts)

- Restructuring: maintainability, extensibility

���17

 5 Implementation

• Developers translate the class
diagram into source code.

• Goal: map object model to code.

���18

• Major activities
- Map classes in model to classes in source language
- Map associations in model to collections in source language

❖ OO languages don’t have “associations”
❖ tricky: maintaining bidirectional associations

- Refactoring

Design characteristics and
metrics

• Some characteristics of a good software design:
- Consistency:

❖ ensure common terminology used across software
elements.

❖ common approach to help facility
❖ common approach to error detection and diagnostic

processing
- Completeness:

❖ All the requirements must be in the design
❖ Design must include enough detail for the

developers to know what to do.

���19

Legacy characteristics of design
attributes

• Targeted at detail design and coding level

• Halstead Complexity Metric
- analyzes source code
- n1 = number of distinct operators
- n2 = number of distinct operands
- N1 = total number of operators (counting duplicates)
- N2 = total number of operands (counting duplicates)

• From these numbers, we calculate
- Program vocabulary: n = n1+n2
- Program length: N = N1+N2

���20

Halstead Complexity Metric, cont.

• Three more measurements
- Volume: V = N * (Log2 n)
- Difficulty: D = n1/2 * N2/n2 

The difficulty to write or understand the program
- Effort: E = D * V  

A measure of actual coding time.

• Criticisms:
- These metrics really measure only the lexical complexity

of the source program and not the structure or the logic.
- Therefore not useful for analyzing design characteristics.

���21

McCabe’s Cyclomatic Complexity

• Basic idea: program quality is directly related to
the complexity of the control flow (branching)

• Computed from a control flow diagram
- Cyclomatic complexity = E - N + 2p
- E = number of edges of the graph
- N = number of nodes of the graph
- p = number of connected components (usually 1)

• Alternate computations:
- number of binary decision + 1
- number of closed regions +1

���22

McCabe’s Cyclomatic Complexity
example

���23

• Using the different computations:
- 7 edges - 6 nodes + 2*1 = 3
- 2 regions + 1 = 3
- 2 binary decisions (n2 and n4) + 1 = 3

McCabe’s Cyclomatic Complexity

• What does the number mean?

• It’s the maximum number of linearly independent
paths through the flow diagram
- used to determine the number of test cases needed to

cover each path through the system

• The higher the number, the more risk exists (and
more testing is needed)
- 1-10 is considered low risk
- greater than 50 is considered high risk

���24

Good Design attributes

• Main goal: Simplicity
- Easy to understand
- Easy to change
- Easy to reuse
- Easy to test
- Easy to code

• How do we measure simplicity of a design?
- Coupling (goal: loose coupling)
- Cohesion (goal: strong cohesion)

���25

Coupling

• Coupling is the number of dependencies between
two subsystems.

- It measures the dependencies between two subsystems.

• If two subsystems are loosely coupled, they are
relatively independent

- Modifications to one of the subsystems will have little
impact on the other.

• If two subsystems are strongly coupled, modifications
to one subsystem is likely to have impact on the other.

• Goal: subsystems should be as loosely coupled as is
reasonable.

���26

Example: reducing the coupling of
subsystems

���27

MapManagement

IncidentManagement

Database

ResourceManagement

Alternative 1: Direct access to the Database subsystem!

High coupling:
The subsystems are
vulnerable to changes
in the interface of the
Database subsystem

Example: reducing the coupling of
subsystems

���28

Added a subsystem: Storage
Only one subsystem must
change if the interface to the
Database changes
(Assumes Storage interface
does not change)

MapManagement

IncidentManagement

Storage

ResourceManagement

Database

Alternative 2: Indirect access to the Database through a Storage subsystem!

Cohesion

• Cohesion is the number of dependencies within a
subsystem.

- It measures the dependencies among classes within a
subsystem.

• If a subsystem contains many objects that are related to
each other and perform similar tasks, its cohesion is high.

• If a subsystem contains a number of unrelated objects, its
cohesion is low. 

• Goal: decompose system so that it leads to subsystems
with high cohesion.

- These subsystems are more likely to be reusable

���29

Example: Decision tracking system

���30

Alternative

Decision

Criterion

subtasks

*
SubTask

ActionItem

DesignProblem

Task

assesses

solvableBy

resolvedBy
based-on

* * *

implementedBy

DecisionSubsystem

Low Cohesion:
Criterion, Alternative, and DesignProblem have No
relationships with SubTask, ActionItem, and Task

Alternative decomposition:
Decision tracking system

���31

subtasks!

*!

assesses!

solvableBy!

resolvedBy!
based-on!

*! *! *!

implementedBy!

RationaleSubsystem!

PlanningSubsystem!

Criterion! Alternative!

Decision!

DesignProblem!

SubTask!

ActionItem! Task!

Higher cohesion in each
subsystem.
But more subsystems and
an extra interface between
Task and Decision

Law of Demeter

• Good guideline for object-oriented design

• An object should send messages to only the following
- the object itself
- the objects attributes (instance variables)
- the parameters of member functions of the object
- Any object created by this object
- Any object returned from a call to one of this objects member

function
- Any object in any collection that is in one of the preceding

categories.

• “Only talk to your immediate neighbors” 
“Don’t talk to strangers”

���32

