Detailed Design

(Chapter 7)

Software Design

¢ Process of converting the requirements into the
design of the system.

e Definition of how the software is to be structured or
organized.

e For large systems, this is divided into two parts:

- Architectural design defines main components of the system
and how they interact.

- Detailed design components are decomposed and described
at a much finer level of detail.

Design and Implementation

Software Design:
- Creative activity, in which you:
- ldentify software components and their relationships
- Based on requirements.

Implementation is the process of realizing the design
as a program.

Design may be
- Documented in UML (or other) models
- Informal sketches (whiteboard, paper)
- Inthe programmer’s head.

How detailed and formal it is depends on the process
that is in use.

Design Processes

Functional Decomposition
- aka: Top down design

Relational Database Design

Object-oriented design and UML
- class diagrams

- state diagrams

- efte.

[User Interface design]

Functional Decomposition

Used in structural programming
(aka procedural programming)

- Start with a “main module”

- Repeatedly decompose into sub-modules.

- Lowest level modules can be implemented as functions.

Can be used in Object-oriented design
- to do initial decomposition of a system

- to decompose methods that are particularly hard to
implement.

Functional Decomposition: example
student registration system

Design a system for managing course
registration and enroliment.

Requirements specify four tasks

- add, modify and delete students from the database
- add, modify and delete courses from the database
- add, modify, and delete sections for a given course
- register and drop students from a section.

Main module divided into four submodules
(students, courses, sections, registration)

Decompose each into its tasks.

6

Functional Decomposition: example
student registration system

2.1 Add ‘ 3.1 Add ‘ 4.1 Register‘

’ 3. Sections

‘ 4. Registration

2.2 Modify‘ 3.2 Modify‘ 4.2 Drop

1.3 Delete 2.3 Delete

3.3 Delete

Relational Database Design

e Many software systems must handle large
amounts of data

e Data is stored in tables
- row corresponds to an object or entity
- columns correspond to attributes of the entities
- (basically an array of structs)

e Structured Query Language (SQL), a set of
statements that
- create the tables
- add and modify data in the tables
- retrieve data that match specified criteria

8

Relational Database Design

¢ Database design concentrates on
- how to represent the data of the system, and
- how to store it efficiently

e Data modeling

- create a model showing the entities with their attributes, and how
the entities are related to each other

¢ Logical database design
- maps the model to a set of tables
- relationships are represented via attributes called foreign keys

* Physical database design
- deciding on types of attributes, how tables are stored, etc.

9

Relational Database Design

e Data modeling: ER diagram
- Entities: rectangles
- Attributes: ovals
- Relationships: diamonds

e |dentifier
- attribute that has a unique value for each entity (underlined)

¢ Multi-valued attribute
- can have several values at one time (double oval)
- i.e. email addresses,

Relational Database design: ER diagram
student registration system

Qe
®@

Course

Belongs

@ @
Eﬁo_nl Takes Student

Semester

Student registration system: tables

Course Section
Number < Course Number
Title Section Number Course Number is a
Credit Hours Semester Toreign key, used to
implement the
Year « ” . .
— Belongs” relationship
Time
Location

Figure 7.12 A relational schema diagram for course and section.

Student Email Student ID is a
foreign key,
D < Student ID used to implement
Name Email the multi-valued
Gender attribute

Figure 7.13 A relational schema diagram for students and email.

Object-oriented design

¢ Object-oriented system is made up of interacting
objects

- Maintain their own local state (private).
- Provide operations over that state.

¢ Object-oriented design process involves
- Designing classes (for objects) and their interactions.

¢ Previous to the design phase:

- Requirements are usually expressed using use cases
and use case diagrams.

- Preliminary class diagrams have often been produced
during requirements analysis.

13

1 Requirements elicitation

¢ Client and developers define the purpose of the
system:

- Develop use cases
- Determine functional and non-functional requirements

e Major activities Chasa D
- ldentifying actors.

(~ Unregister

- ldentifying scenarios. _patient_/
- ldentifying use cases. % ~ Cewpaten

- Refining use cases.

Medical
receptionist

{ Transfer data\/‘
A

AN

Use case diagrams

‘\\ patient /‘

2 Object Oriented Analysis

¢ Developers aim to produce a model of the
system

Class
- Model is a class diagram
- Describing real world objects (only)

1 1.*

| Faculty ‘ ’ Student ‘

e Goal: transform use cases to objects

e Major activities
- ldentifying objects: entities from the real world
Look for nouns in use cases
- Drawing the class diagram, with relationships
- Drawing state diagrams as necessary

15

3 System Design (architecture)

Developers decompose the system into smaller
subsystems

Controller ‘ | View |

Maps user actions | Renders model
to model uo Requests model updates
< Sends user events to
controller

A

Change
notification

change State query
(set values Model (get values
in model) from model)
Encapsulates application
state (DI

Notifies view of state
changes

Major activities
- Identify major components of the
system and their interactions (including interfaces).
Use architectural patterns
- ldentify design goals (non-functional requirements)
- Refine the subsystem decomposition to address design goals

4 Object Design

¢ Developers complete the object model by adding
implementation classes to the class diagram.

X

e Major activities =
- Interface specification: define public interface of objects
- Reuse:
frameworks, existing libraries (code)
design patterns (concepts)
- Restructuring: maintainability, extensibility

17

5 Implementation

¢ Developers translate the class
diagram into source code.

e Goal: map object model to code.

e Major activities

- Map classes in model to classes in source language

- Map associations in model to collections in source language
OO languages don’t have “associations”
tricky: maintaining bidirectional associations

- Refactoring

Design characteristics and
metrics

e Some characteristics of a good software design:
- Consistency:
+ ensure common terminology used across software
elements.
common approach to help facility

common approach to error detection and diagnostic
processing

- Completeness:
All the requirements must be in the design

Design must include enough detail for the
developers to know what to do.

Legacy characteristics of design
attributes

e Targeted at detail design and coding level

e Halstead Complexity Metric
- analyzes source code
- n1 = number of distinct operators
- n2 = number of distinct operands
- N1 = total number of operators (counting duplicates)
- N2 = total number of operands (counting duplicates)

e From these numbers, we calculate
- Program vocabulary: n = n1+n2
- Program length: N = N1+N2

20

Halstead Complexity Metric, cont.

e Three more measurements
- Volume: V=N * (Log2 n)
- Difficulty: D = n1/2 * N2/n2
The difficulty to write or understand the program
- Effortt E=D*V
A measure of actual coding time.

e Criticisms:
- These metrics really measure only the lexical complexity
of the source program and not the structure or the logic.

- Therefore not useful for analyzing design characteristics.

21

McCabe’s Cyclomatic Complexity

e Basic idea: program quality is directly related to
the complexity of the control flow (branching)

e Computed from a control flow diagram
- Cyclomatic complexity = E - N + 2p
- E = number of edges of the graph
- N = number of nodes of the graph
- p = number of connected components (usually 1)

e Alternate computations:
- number of binary decision + 1
- number of closed regions +1

22

McCabe’s Cyclomatic Complexity
example

¢ Using the different computations:
- 7 edges-6nodes+2*1=3
- 2regions+1=3 —
- 2 binary decisions (n2and n4) + 1 =3 ;‘1“)

McCabe’s Cyclomatic Complexity

e What does the number mean?

e |t's the maximum number of linearly independent
paths through the flow diagram

- used to determine the number of test cases needed to
cover each path through the system

e The higher the number, the more risk exists (and
more testing is needed)
- 1-10 is considered low risk
- greater than 50 is considered high risk

24

Good Design attributes Coupling

Coupling is the number of dependencies between

e Main goal: Simplicity
two subsystems.

- Easy to understand
- Easy to change _
- Easytoreuse
- Easy to test

- Easy to code

It measures the dependencies between two subsystems.

If two subsystems are loosely coupled, they are
relatively independent

- Modifications to one of the subsystems will have little

¢ How do we measure simplicity of a design? :
impact on the other.

- Coupling (goal: loose coupling)
- Cohesion (goal: strong cohesion)

If two subsystems are strongly coupled, modifications
to one subsystem is likely to have impact on the other.

Goal: subsystems should be as loosely coupled as is
reasonable.

25 26

Example: reducing the coupling of Example: reducing the coupling of

Alternative 1: Direct access to the Database subsystem Alternative 2: Indirect access to the Database through a Storage subsystem
A ResourceManagement
ResourceManagement \ \ A} IncidentManagement
\
\ \ //
IncidentManagement MapManagement
\\ \) e
~ Ve
\ P ~ s
MapManagement \ \.4 _ s ~3 Storage g
7

S - I

T4 Database _\ :

%

Database

27

Cohesion
Cohesion is the number of dependencies within a
subsystem.

- It measures the dependencies among classes within a
subsystem.

If a subsystem contains many objects that are related to
each other and perform similar tasks, its cohesion is high.

If a subsystem contains a number of unrelated objects, its
cohesion is low.

Goal: decompose system so that it leads to subsystems
with high cohesion.

- These subsystems are more likely to be reusable

29

Example: Decision tracking system

DecisionSubsystem

. . assesses
Criterion Alternative

% * *

solvableBy

based-on

Decision

DesignProblem

olvedBy

SubTask

/\

X implementedBy
ActionItem Task
subtasks

30

Alternative decomposition:
Decision tracking system

RationaleSubsystem

Criterion Alternative

based-on

resolvedBy

Decision
P1anningSubsyste
implementedBy
SubTask

/\

| L1
| ActionItem | | Task FD*--
subtasks

31

Law of Demeter

Good guideline for object-oriented design

An object should send messages to only the following

the object itself

the objects attributes (instance variables)

the parameters of member functions of the object

Any object created by this object

Any object returned from a call to one of this objects member
function

Any object in any collection that is in one of the preceding
categories.

“Only talk to your immediate neighbors”
“‘Don’t talk to strangers”

32

