
Implementation
!
!

(Chapter 7)

!1

Characteristics of a good
Implementation

• Readability: code can be easily read and understood
by other programmers.

• Maintainability: code can be easily modified and
maintained.

• Performance: code performs as fast as possible.

• Traceability: all elements of code should correspond
to a design element

• Correctness: it should perform as intended, with
respect to requirements and detailed design.

• Completeness: it meets all system requirements.
!2

Tradeoffs and interactions of
characteristics

• Readability usually helps maintainability.

!

• Readability and maintainability usually help
achieve correctness

- how? debugging is much easier.

!

• Performance optimizations often reduce readability
and maintainability.

!3

How to achieve the desired
implementation characteristics

• Readability and maintainability
- Programming style and coding guidelines
- Using comments well
- Refactoring

• Correctness
- Testing and debugging

• Performance
- Optimization

!4

Programming style and coding
guidelines

• Naming
- Good names contribute significantly to improving

readability.
- Well chosen names convey the intent of the element
- Poorly chosen names are misleading and confusing

❖ often indicate programmer does not understand the code or that
the element is poorly designed.

- File name should correspond to elements it contains

• Indentation
- Use indentation to reflect the structure of the code

• Function size
- Large functions are more error prone (and less cohesive)

!5

Comments

• Should be used to enhance understanding of code
- Good example: explaining the interface of a class or function

• Problems:
- When they distract from the code (clutter)
- When they are wrong or misleading

• Examples of poor uses of comments
- Commenting out entire sections of code

❖ may not be clear it’s commented out
❖ why is it there?

- Comments that explain the code
❖ usually a cover up for poorly written code

- Commenting out output statements used for debugging
- Indicating when code was changed by who for what reason

❖ This info can be found using version control system

!6

Debugging

• Fixing errors in the code
- especially run-time/logic errors

• Process:
1. Reproduce the error

- Write a test case that demonstrates the error
2. Find the section of code that leads to the error

- See next slide
3. Correct the code

- Don’t do this first! Don’t guess!
4. Verify the fix

- Re-run the test case and make sure you get no error

!7

Debugging

Debugging methods:

• Temporary output statements inserted into code:
- view values of variables
- analyze control flow

• Interactive debuggers
- Tool used to view variables, step through the code, insert

breakpoints
- Sometimes have a steep learning curve

• Profilers
- Tool that gives statistics about code, or memory while code

is executing, or other metrics

!8

Performance Optimization

• Improving performance requires changes to code
that often make it less readable and maintainable.

• Many programmers worry about performance too
early.

- Instead you should write readable code first and then add
performance improvements later, as needed.

• How to optimize:
- Use a profiler to determine how much time is spent on

each part of the program
- first get a baseline, find the problematic areas
- after code is modified, run profiler again and compare to

baseline.
!9

Implementation issues

• Aspects of implementation that are important to
software engineering but not covered in
programming textbooks 

- Configuration management: managing the different
versions of each software component (the source code).
!

- Open source development: when the source code of the
system is publicly available.

!10

Configuration management

• Potential problems of team development
- Interference: Changes made by one programmer could

overwrite a change previously made by another.
- Redo good work: Programmers accessing out-of-date

versions could re-implement work already done.
- Can’t undo bad work: Figuring out how to undo problems

introduced into a previously functioning system.

• Configuration management: Process of managing
a changing software system, so all developers can
- access code and documentation in a controlled way
- find out what changes have been made
- compile and link components to create the system.

!11

Fundamental configuration
management activities

• Version management
- track different versions of the files in the program
- coordinate work of multiple developers.

• System integration
- define which versions of each component and/or file are

used for a given version of the overall system.
- then builds system automatically

• Problem tracking
- allows users to report and track bugs.
- allows developers to track progress on fixing bugs.

!12

Configuration management tools

• Integrated tools: all three components in one
- tools share same interface, can share information
- ClearCase

• Version management
- CMVC, CVS, subversion, git, mercurial.

• System integration (build tools)
- make (unix), Apache Ant, or built into IDE

• Problem tracking
- bugzilla
- any database

!13

Open source development

• The source code of the system is publicly available

• Volunteers are invited to participate in the
development process (may be users).

• Some open source projects:
- Linux, Apache web server, Java
- Eclipse, FireFox, Thunderbird, Open Office

• Issues for the developer:
- Should an open source approach be used for the software’s

development?
- Should the system being developed (re)use open source

software components?

!14

Open source development

• How to make money developing open source
products?
- Development is cheaper: volunteer labor.
- The company can sell support services
- Software must have wide appeal

• Re-using open source software in software
products:
- These components are generally free.
- These components are generally well-tested.
- There may be licensing issues. . .

!15

Open source licenses

• GNU General Public License (GPL).
- reciprocal
- if you re-use this open source software in your software then

you must make your software open source.

• GNU Lesser General Public License (LGPL)
- you can write components that link to open source code

without having to publish the source of these components.

• Berkley Standard Distribution (BSD) License.
- non-reciprocal
- not obliged to re-publish any changes or modifications made

to open source code.
- you may include the code in proprietary systems that are sold.

!16

