
!
	 TEXAS	 STATE	 UNIVERSITY	 	

Regression	 Testing	 	
A	 Survey	 of	 Existing	 Methods	 	
Jesse	 J.	 Bruni	 	
2/28/2012	 	 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Abstract
As programs are written the need to maintain the code from one version to the next, as well
as the need to discover any faults introduced by the changed code is addressed by Regression
testing. In this paper we will examine the various techniques of regression testing, state the
pros and cons of each technique, as well as comparisons between them. !

I. Introduction !

Regression testing is defined as any type of testing which is done on a software program after

changes have been made to the code [1]. This testing is performed in order to ensure that the

changes made to the code have not inadvertently caused previously working parts of the code to

malfunction. Regression tests are often performed to examine whether a change added in a new

version of a program will cause other portions of the program to malfunction. The common

practice is to re-run previously run tests which exposed bugs in order to determine whether fixed

bugs have re-emerged, or the program has been adversely affected in any other way [5]. The

problem emerges in the effort to keep costs low, while still providing a test suite capable of

thoroughly testing the program. Regression test suites for larger and more complex programs

may often examine only a small portion of the program behavior [2].

The main reason for this is that manually generating test cases that can cover the majority of a

complex program is difficult and time consuming [1]. Developers often focus on the program’s

main functionality when writing test cases for regression testing and allow other methods, such

as beta testing, to ensure the rest of the program is working [2].

In order to combat these costs and still provide a thorough test suite many researchers suggest

that regression testing be automated [1], [2], [3], often using programs such as “JUnit” [1].

Whether or not testing is automated there tend to be four main techniques to approach regression

testing [4]. These methods are:

1.) Retest All

This technique is considered a “Safe” method, and involves taking all the tests previously run for

the older version of the program and re-running them on the new version. This method can be

�2

quite expensive and wasteful as often not all tests from the previous test suite are applicable to

the new software version [5].

2.) Regression Test Selection

Also called “Minimization Techniques” [5], this method attempts to cut down the test suite for

the original program and only use those tests which are most likely to expose a bug or reveal a

fault in the new program. There are many ways to approach test selection as this is one of the

more popular methods used in creating test suites for regression testing [4].

3.) Test Case Prioritization

This method assigns priorities to the tests in the suite in order to cut down on costs and runs test

in order from those with the most priority to those with the least. Those with the highest priority

are those which are most likely to expose bugs quickly [4].

4) Hybrid Approach

This approach is a mix of regression test selection, and test prioritization, cutting out unnecessary

test, and choosing only those which are most likely to expose bugs, and then prioritizing that new

test suite [4].

Knowing these various methods which we have at our disposal the problem then becomes which

method to choose. Throughout the rest of this paper we will explain these methods in more

detail, and compare them to one another. The purpose will be to help the reader understand what

testing options are available to a software developer, as well as which method may be the most

prudent choice based on the size of the program being developed, it’s purpose, and complexity.

We will also explain the difference between “safe” and “non-safe” [5] techniques.

!
�3

II. Regression Testing Techniques !

In this section we will give more detailed explanations of the four techniques outlined in section

I. We will first, however, define what is meant by calling a technique “safe”.

Safe vs. Unsafe Techniques

A safe regression testing technique is one which will keep any and all test cases which can reveal

a bug or fault in the program. Most regression testing techniques are not designed to be 100%

safe [5].

Unsafe techniques are considered to be such because the algorithm used to implement them may

choose to not include tests which would have exposed a fault in the program. This may be

considered acceptable depending on how much time and money the unsafe technique saves

compared to how few faults are missed [4],[5],[6].

A. Retest All

The retest all technique is perhaps the simplest and, depending on the size of the program can be

the most cost-effective [5]. Because it is a safe technique, (meaning if a previously run test can

expose a bug in the new version of the software the bug will be exposed) it is often used when

test suites are not very large. In order for a different method to be more effective than the retest-

all technique the cost of selecting or prioritizing tests to run, as well as the cost of running those

tests must be less than the cost of simply re-running all tests from the original test suite [6].

B. Regression Test Selection

Perhaps more research and studies have been done on this technique than any other. The idea of

keeping costs low when testing is of paramount importance to any company, and reducing the

number of tests needed to maximize fault detection can certainly help cut down on costs. The

�4

biggest issue with test selection is that by throwing out test cases you risk throwing out a test

that, if run, may have detected a fault in the new version of the program [4],[5],[6]. Another

concern is that the cost of selecting a test suite to run, as well as actually running the tests may

end up costing more than just re-running all the original tests.

[6] suggests that in order to analyze regression test techniques we must create four categories or

criteria for judging their effectiveness. These categories are, Inclusiveness, Precision, Efficiency,

and Generality.

Inclusiveness measures how well a given technique can select appropriate tests from the original

test suite that will expose bugs in the new version of the program. A technique which is 100%

inclusive would be considered a safe technique.

Precision measures how well a technique determines appropriately which tests to cut from the

original test suite as obsolete tests or tests which will not reveal faults in the new program

version.

Efficiency measures the cost, in terms of system resources, of the technique.

Generality measures how well the technique actually functions in a wide range of situations.

Whether these four criteria are used for test selection or not the bottom line is that any method of

test selection used must still cost less than retest-all in order to risk the chance of letting faults go

undetected.

C. Test Case Prioritization

[4] divides Test Case Prioritization into 3 subcategories Comparator Techniques, Statement Level

Techniques , and Function Level Techniques.

�5

Comparator Techniques include random ordering, where test cases are prioritized randomly, and

optimal ordering, where test cases are prioritized based on their rate of fault detection.

Statement Level Techniques prioritize tests based on the number of program statements a test

covers. The test which covers the most program statements gets the highest priority.

Function Level Techniques prioritizes tests based on the number of program functions a test

includes. A test which tests multiple functions will receive a higher priority than a test which can

only test a single function.

Test case prioritization requires good algorithms to be written in order to organize and prioritize

tests effectively. Much research has been done on the subject of test case prioritization

algorithms [4].

D. Hybrid Approach

The hybrid approach requires algorithms to be written which can both select tests from the

original test suites as well as prioritize these tests. Various techniques have been proposed which

incorporate a hybrid approach including the technique proposed by [7].

!
III. Technique Comparisons !

A good comparison of regression testing techniques will compare the two main factors in

regression testing; the total effectiveness of the technique, and the cost of the technique.

Since there are far too many techniques in each subcategory that could be compared to each

other we will instead focus on comparing the main ideas from one category to another. Each of

�6

these examples will be compared against the retest-all technique. Before we do this, however, we

will give a brief description of the pros and cons of each technique.

A. Pros and Cons

Retest-All

Pros: Safe technique, low cost on small programs, easy to implement.

Cons: Cost increases dramatically as the size of the program increases.

Regression Test Selection

Pros: Costs less than retest-all on most large programs, if implemented properly can be a safe

technique (such as [8]).

Cons: Implementation Algorithms can be quite complex and the cost of implementing along with

executing may exceed the cost of retest-all.

Test Case Prioritization

Pros: Provides good program coverage in a short period of time; safe technique.

Cons: Not as effective at cutting costs as Regression Test Selection, or the Hybrid Approach.

Complicated Algorithms.

Hybrid Approach

Pros: Costs tend to be lower than that of any other method as program sizes get very large. May

or may not be safe depending on implementation.

Cons: Most complicated algorithms of any other method. Not often worth implementation costs

on small programs.

!
!

�7

B. Comparisons

[6] gives us many statistics and comparisons between various Regression Test Selection

Techniques and the Retest-All method. These outcomes of these studies varied based on the test

selection method used, as well as the program the tests were written for. In many cases there was

no Regression Test Selection method was as cost effective and safe as retest-all. However there

were other cases where an RTS method proved to be cheaper (in terms of system resources) and

still safe.

As more research has been done and algorithms refined, RTS methods have been devised which

are 100% inclusive and cheaper than retest-all such as the method discussed in [8].

Since the Test Case Prioritization technique does not cut down on the size of the test suite its

main advantage over retest-all is the ability of prioritization techniques to discover faults quickly,

as the sooner a fault is discovered the sooner it can be dealt with and corrected. Several search

algorithms have been proposed and perhaps a good comparison of test case prioritization is in

fact a comparison of those algorithms. However we do not have enough space in this paper to

give an adequate explanation of the various search algorithms currently being employed as well

as a comparison between them. For a detailed breakdown of these algorithms one should see [9].

According to most sources [4],[6],[9], test case prioritization, if used as the only method of

improving regression testing, is most useful in longer programs where the need to find faults in

the program quickly is of utmost importance.

[7] compares the difference between using a minimization technique and a prioritization

technique on a test suite that has already been reduced using an RTS method. The main idea is

that one method is not inherently better than the other; simply that one method may be preferable

�8

to another depending on the circumstances of the situation. For example if one cannot afford to

exercise many regression tests a prioritization method (in which the reduced test suite is ordered

with those most likely to expose bugs having the highest priority) would be the best method.

When compared with a retest-all method the cost of implementing multiple techniques (selection

and prioritization), is clearly greater than that of selecting only one technique, unless we have a

large program, so a hybrid approach should typically only be used on when the level of detail

required in the modified test suite, and the ordering of the tests in the test suite is such that 8

maximum fault exposure is of paramount importance, or unless we have a program with sizes so

large that minimization of the test suite is not enough and prioritization is also required.

!
V. Conclusion !

Throughout this paper we have explored the methods and tools used by software developers to

perform regression testing. We have seen the simplest method, retest-all, and examined its pros

and cons. We have seen that due to its simplicity it will likely continue to be used on smaller

programs.

We have also seen the Regression Test Selection method, and seen four criteria for evaluating the

method, Inclusiveness, Precision, Efficiency, and Generality. We have seen that these methods

may end up being more expensive than retest-all, and we have seen methods that are 100%

inclusive and in most cases cost less than retest-all such as the methods of [8].

We have also discussed Test Case Prioritization and divided it into three subcategories,

Comparator Techniques, Statement Level Techniques, and Function Level Techniques. We have

seen that because this technique does not reduce the size of the test suite it is most effective in

�9

situations where we cannot afford to run every test and so we would like to maximize the

effectiveness of those we do run.

Finally we saw the Hybrid approach as well as situations where we may desire to use this

approach including those situations where the program size was quite large and executing all of

even an extremely reduced test suite would be quite expensive.

Whether or not the future of regression testing is simple rehashing of the same methods and

finding better ways to implement them, or if the future turns out to be a different approach such

as the use of intelligent agents, good computer scientists will always be working on ways to

make improvements to the way we approach and solve the problem of regression testing.

!
VI. References

[1] Sommerville, Ian, “Software Engineering,” Software Testing, 9th ed., Pearson, Boston, 2011,
pp. 223.  !
[2] Wei Jin; Orso, A.; Tao Xie; , "Automated Behavioral Regression Testing," Software Testing,
Verification and Validation (ICST), 2010 Third International Conference on , vol., no., pp.
137-146, 6-10 April 2010.  !
[3] Salima, T.M.S. Ummu; Askarunisha, A.; Ramaraj, N.; , "Enhancing the Efficiency of
Regression Testing through Intelligent Agents," Conference on Computational Intelligence and
Multimedia Applications, 2007. International Conference on , vol.1, no., pp.103-108, 13-15 Dec.
2007. !
[4] Gaurav Duggal, Mrs. Bharti Suri. Understanding Regression Testing Techniques. Delhi,
India: Guru Gobind Singh Indraprastha University, 2007.  !
[5] Graves, T.L.; Harrold, M.J.; Kim, J.; Porters, A.; Rothermel, G.; , "An empirical study of
regression test selection techniques," Software Engineering, 1998. Proceedings of the 1998
International Conference on , vol., no., pp.188-197, 19-25 Apr 1998. !
[6] Rothermel, G.; Harrold, M.J.; , "Empirical studies of a safe regression test selection
technique," Software Engineering, IEEE Transactions on , vol.24, no.6, pp.401-419, Jun 1998 .

�10

!
[7] Wong, W.E.; Horgan, J.R.; London, S.; Agrawal, H.; , "A study of effective regression testing
in practice," PROCEEDINGS The Eighth International Symposium On Software Reliability
Engineering , vol., no., pp.264-274, 2-5 Nov1997. !
[8] Chittimalli, P.K.; Harrold, M.-J.; , "Recomputing Coverage Information to Assist Regression
Testing," Software Engineering, IEEE Transactions on , vol.35, no.4, pp.452-469, July-Aug.
2009. !
[9] Li, Z.; Harman, M.; Hierons, R.M.; , "Search Algorithms for Regression Test Case
Prioritization," Software Engineering, 13 IEEE Transactions on , vol.33, no.4, pp.225-237, April
2007

�11

