
!1

Trees, Binary Search Trees, and
Heaps

CS 5301
Fall 2013

!
Jill Seaman

Gaddis ch. 20, Main + Savitch: ch. 10, 11.1-2
!2

Tree:
non-recursive definition

l Tree: set of nodes and directed edges
- root: one node is distinguished as the root
- Every node (except root) has exactly exactly one

edge coming into it.
- Every node can have any number of edges going

out of it (zero or more).
l Parent: source node of directed edge
l Child: terminal node of directed edge

!3

Tree:
example

!

!

!

!

!

l edges are directed down (source is higher)
l D is the parent of H. Q is a child of J.
l Leaf: a node with no children (like H and P)
l Sibling: nodes with same parent (like K,L,M) !4

Tree:
recursive definition

l Tree:
- is empty or
- consists of a root node and zero or more

nonempty subtrees, with an edge from the root to
each subtree (a subtree is a Tree).

!5

Tree terms

l Path: sequence of (directed) edges
l Length of path: number of edges on the path
l Depth of a node: length of path from root to

that node.
l Height of a node: length of longest path from

node to a leaf.

!6

Tree traversal
l Tree traversal: operation that converts the

values in a tree into a list
- Often the list is output

l Pre-order traversal
- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree 

- Do a preorder traversal on last subtree
. . .

This is recursive. What’s the base case?

!7

Preorder traversal:
Expression Tree

!

!

!

!

!

!

l print node value, process left tree, then right
!

l prefix notation (for arithmetic expressions)
+ + a * b c * + * d e f g

!8

Postorder traversal:
Expression Tree

!

!

!

!

!

!

l process left tree, then right, then node
!

l postfix notation (for arithmetic expressions)
a b c * + d e * f + g * +

!9

Inorder traversal:
Expression Tree

!

!

!

!

!

!

!
l if each node has 0 to 2 children, you can do inorder traversal
l process left tree, print node value, then process right tree
!
l infix notation (for arithmetic expressions)

a + b * c + d * e + f * g

!10

Binary Trees

l Binary Tree: a tree in which no node can
have more than two children.
!

!

!

l height: shortest: log2(n) tallest: n
n is the number of
nodes in the tree.

!11

Binary Trees: implementation

l Structure with a data value, and a pointer to the
left subtree and another to the right subtree.
!

!

!

!

l Like a linked list, but two “next” pointers.
l This structure can be used to represent any

binary tree.

struct TreeNode {!
 <type> data; // the data!
 BinaryNode *left; // left subtree!
 BinaryNode *right; // right subtree!
};

!12

Binary Search Trees

l A special kind of binary tree
l A data structure used for efficient searching,

insertion, and deletion.
l Binary Search Tree property:

!

- All the values in the left subtree are smaller than
the value at X.
- All the values in the right subtree are larger than

the value at X.
l Not all binary trees are binary search trees

For every node X in the tree:

!13

Binary Search Trees

A binary search tree Not a binary search tree

!14

Binary Search Trees
An inorder traversal of a BST shows the values in
sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20

!15

Binary Search Trees: operations
l insert(x)
l remove(x) (or delete)
l isEmpty() (returns bool)
!

l find(x) (returns bool)
l findMin() (returns ItemType)
l findMax() (returns ItemType)

!16

BST: find(x)
!

!

!

!

l if we are searching for 15 we are done.
l If we are searching for a key < 15, then we

should search in the left subtree.
l If we are searching for a key > 15, then we

should search in the right subtree.

Recursive Algorithm:

!

!

l compare 9 to 15, go left
l compare 9 to 6, go right
l compare 9 to 7 go right
l compare 9 to 13 go left
l compare 9 to 9: found

!17

BST: find(x)

Example: search for 9

l Pseudocode
l Recursive

!18

BST: find(x)

bool find (ItemType x, TreeNode t) {!
!
 if (isEmpty(t))!
 return false  
 !
 if (x < value(t))!
 return find (x, left(t))!
 !
 if (x > value(t))!
 return find (x, right(t))!
!
 return true // x == value(t)!
!
}

Base case

l Smallest element is found by always taking the left
branch.

l Pseudocode
l Recursive
l Tree must not be empty

!19

BST: findMin()

ItemType findMin (TreeNode t) {!
 assert (!isEmpty(t))!
 !
 if (isEmpty(left(t)))!
 return value(t)!
 !
 return findMin (left(t))!
!
} !20

BST: insert(x)
l Algorithm is similar to find(x)
l If x is found, do nothing (no duplicates in tree)
l If x is not found, add a new node with x in place of

the last empty subtree that was searched.

Inserting 13:

l Pseudocode
l Recursive

!21

BST: insert(x)

bool insert (ItemType x, TreeNode t) {!
!
 if (isEmpty(t))!
 make t’s parent point to new TreeNode(x)  
 !
 else if (x < value(t))!
 insert (x, left(t))!
 !
 else if (x > value(t))!
 insert (x, right(t))!
!
 //else x == value(t), do nothing, no duplicates!
!
}

l Append x to the end of a singly linked list:
- Pass the node pointer by reference
- Recursive

!22

Linked List example:

void List::append (double x) { !
 append(x, head);!
}!
!
void List::append (double x, Node *& p) {!
 !
 if (p == NULL) {!
 p = new Node();!
 p->data = x;!
 p->next = NULL;!
 } !
 else !
 append (x, p->next);!
}

Public function

Private recursive function

!23

BST: remove(x)
l Algorithm is starts with finding(x)
l If x is not found, do nothing
l If x is not found, remove node carefully.
- Must remain a binary search tree (smallers on left, biggers

on right).

!24

BST: remove(x)
l Case 1: Node is a leaf
- Can be removed without violating BST property

l Case 2: Node has one child
- Make parent pointer bypass the Node and point to child

Does not matter
if the child is the
left or right child
of deleted node

!25

BST: remove(x)
l Case 3: Node has 2 children
- Replace it with the minimum value in the right subtree
- Remove minimum in right:

❖ will be a leaf (case 1), or have only a right subtree (case 2) 
--cannot have left subtree, or it’s not the minimum

remove(2): replace it with the
minimum of its right subtree (3)
and delete that node.

!26

Binary heap data structure

l A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)
- has an ordering property (parent value is

smaller than child values)
- NOT a Binary Search Tree!

l Used in the following applications
- Priority queue implementation: supports

enqueue and deleteMin operations in O(log N)
- Heap sort: another O(N log N) sorting algorithm.

!27

Binary Heap:
structure property

l Complete binary tree: a tree that is
completely filled
- every level except the last is completely filled.
- the bottom level is filled left to right (the leaves

are as far left as possible).

!28

Complete Binary Trees

l A complete binary tree can be easily stored in
an array
- place the root in position 1 (for convenience)

!29

Complete Binary Trees
Properties

!

l In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:
- left child at position 2i (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor(i/2) (or use integer division)

!30

Binary Heap:
ordering property

l In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).
- the minimum value of the heap is always at the

root.

l First: add a node to tree.
- must be placed at next available location, size+1,

in order to maintain a complete tree.
l Next: maintain the ordering property:
- if x is greater than its parent: done
- else swap with parent, repeat

l Called “percolate up” or “reheap up”
l preserves ordering property

!31

Heap: insert(x)

!32

Heap: insert(x)

l Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated.

l First: move last element up to the root
l Next: maintain the ordering property, start with root:
- if both children are greater than the parent: done
- otherwise, swap the smaller of the two children with

the parent, repeat
l Called “percolate down” or “reheap down”
l preserves ordering property
l O(log n)

!33

Heap: deleteMin()

!34

Heap: deleteMin()

