Trees, Binary Search Trees, and
Heaps

CS 5301
Fall 2013

Jill Seaman

Gaddis ch. 20, Main + Savitch: ch. 10, 11.1-2

Tree:
non-recursive definition

« Tree: set of nodes and directed edges
- root: one node is distinguished as the root

- Every node (except root) has exactly exactly one
edge coming into it.

- Every node can have any number of edges going
out of it (zero or more).

 Parent: source node of directed edge
 Child: terminal node of directed edge

L

Tree:
example

Figure 4.2 A tree

* edges are directed down (source is higher)

* D is the parent of H. Q is a child of J.

* Leaf: a node with no children (like H and P)

- Sibling: nodes with same parent (like K,L,M),

Tree:
recursive definition

* Tree:
- is empty or

- consists of a root node and zero or more
nonempty subtrees, with an edge from the root to
each subtree (a subtree is a Tree).

S
LN LNONGN A

Figure 4.1 Generic tree

Tree terms

» Path: sequence of (directed) edges
* Length of path: number of edges on the path

* Depth of a node: length of path from root to
that node.

* Height of a node: length of longest path from
node to a leaf.

Tree traversal

* Tree traversal: operation that converts the
values in a tree into a list

- Often the list is output
* Pre-order traversal
- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree

- Do a preorder traversal on last subtree

Preorder traversal:
Expression Tree

Figure 4.14 Expression tree for (@ + b * ¢) + ((d * e + f) * g)

* print node value, process left tree, then right

‘++a*bc*+*defg

« prefix notation (for arithmetic expressions)

7

Postorder traversal:
Expression Tree

Figure 4.14 Expression tree for (@ + b * ¢) + ((d * e +) * g)

* process left tree, then right, then node

‘abc*+de*f+g*+

* postfix notation (for arithmetic expressions)

8

(

Inorder traversal:
Expression Tree

Figure 4.14 Expression tree for (@ + b * ¢) + ((d * e + f) * g)

if each node has 0 to 2 children, you can do inorder traversal
process left tree, print node value, then process right tree
a+tb*c+d*e+f*g

infix notation (for arithmetic expressions) 9

Binary Trees

Binary Tree: a tree in which no node can
have more than two children.

(=),
S

height: shortest: logz(n) tallest: n

n is the number of
nodes in the tree.

Binary Trees: implementation

Structure with a data value, and a pointer to the
left subtree and another to the right subtree.

struct TreeNode {

<type> data; // the data
BinaryNode *left; // left subtree
BinaryNode *right; // right subtree
}i

Like a linked list, but two “next” pointers.

This structure can be used to represent any
binary tree.

11

Binary Search Trees

A special kind of binary tree

A data structure used for efficient searching,
insertion, and deletion.

Binary Search Tree property:

For every node X in the tree:

All the values in the left subtree are smaller than
the value at X.

All the values in the right subtree are larger than
the value at X.

Not all binary trees are binary search trees ,

Abinary search tree

Not a binary search tree

Binary Search Trees |

An inorder traversal of a BST shows the values in
sorted order

Inorder traversal: 234679131517 18 20

Binary Search Trees: operations |

* insert(x)
* remove(x) (or delete)
* isEmpty() (returns bool)

» find(x) (returns bool)
* findMin() (returns ItemType)
* findMax() (returns ltemType)

BST: find(x) |

_— Toot \

Recursive Algorithm:
- if we are searching for 15 we are done.

* If we are searching for a key < 15, then we
should search in the left subtree.

* If we are searching for a key > 15, then we
should search in the right subtree.

16

BST: find(x)

Example: search for 9

« compare 9 to 15, go left
» compare 9 to 6, go right
» compare 9 to 7 go right
» compare 9 to 13 go left
- compare 9 to 9: found

BST: find(x)

* Pseudocode
* Recursive
bool find (ItemType x, TreeNode t) {
if (isEmpty(t))
return false

if (x < value(t))
return find (x, left(t))

if (x > value(t))
return find (x, right(t))

return true // x == value(t)

BST: findMin()

* Smallest element is found by always taking the left
branch.

* Pseudocode
* Recursive
* Tree must not be empty

ItemType findMin (TreeNode t) {
assert (!isEmpty(t))

if (isEmpty(left(t)))
return value(t)

return findMin (left(t))

BST: insert(x)

* Algorithm is similar to find(x)
* If x is found, do nothing (no duplicates in tree)

* If x is not found, add a new node with x in place of
the last empty subtree that was searched.

Inserting 13:

20

BST: insert(x)

* Pseudocode
* Recursive

bool insert (ItemType x, TreeNode t) {

if (isEmpty(t))
make t’s parent point to new TreeNode(x)

else if (x < value(t))
insert (x, left(t))

else if (x > value(t))
insert (x, right(t))

//else x == value(t), do nothing, no duplicates

21

Linked List example:

* Append x to the end of a singly linked list:
- Pass the node pointer by reference
- Recursive

void List::append (double x) { [::::::::::]

append(x, head);
}

void List::append (double x, Node *& p) {

if (p == NULL) { ‘

p = new Node();
p->data = x;
p->next = NULL;
}
else
append (X, p->next); 22

BST: remove(x)

* Algorithm is starts with finding(x)
* If x is not found, do nothing
* If x is not found, remove node carefully.

- Must remain a binary search tree (smallers on left, biggers
on right).

23

BST: remove(x)

* Case 1: Node is a leaf
- Can be removed without violating BST property
Case 2: Node has one child
- Make parent pointer bypass the Node and point to child

Does not matter
if the child is the
left or right child
of deleted node

Figure 4.24 Deletion of a node (4) with one child, before and after

24

BST: remove(x)

« Case 3: Node has 2 children

- Replace it with the minimum value in the right subtree
- Remove minimum in right:

« will be a leaf (case 1), or have only a right subtree (case 2)
--cannot have left subtree, or it's not the minimum

remove(2): replace it with the
minimum of its right subtree (3)
and delete that node.

Figure 4.25 Deletion of a node (2) with two children, before and after

Binary Heap:
structure property
« Complete binary tree: a tree that is
completely filled
- every level except the last is completely filled.

- the bottom level is filled left to right (the leaves
are as far left as possible).

Binary heap data structure

* A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)

- has an ordering property (parent value is
smaller than child values)

- NOT a Binary Search Tree!
* Used in the following applications

- Priority queue implementation: supports
enqueue and deleteMin operations in O(log N)

- Heap sort: another O(N log N) sorting algorithm.

26

Complete Binary Trees

* A complete binary tree can be easily stored in
an array

- place the root in position 1 (for convenience)

Complete Binary Trees
Properties

* In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:
- left child at position 21 (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position £loor(i/2) (or use integer division)

29

Binary Heap:
ordering property
* In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).

- the minimum value of the heap is always at the
root.

(@) (b)
Figure 21.3 Two complete trees: (a) a heap; (b) not a heap. 30

—————

Heap: insert(x)

 First: add a node to tree.

- must be placed at next available location, size+1,
in order to maintain a complete tree.

* Next: maintain the ordering property:
- if x is greater than its parent: done
- else swap with parent, repeat

* Called “percolate up” or “reheap up”

* preserves ordering property

31

Heap: insert(x)

~

13
e

®

‘ 14 W
21) i'\/ \\,’ﬁh
5 9 & @ ﬁ
S®® O ®®@® @)

Figure 21.7 Attempt to insert 14, creating the hole and bubbling the hole up.

Figure 21.8 The remaining two steps required to insert 14 in the original heap
shown in Figure 21.7. 32

Heap: deleteMin()

* Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated.

« First: move last element up to the root

* Next: maintain the ordering property, start with root:
- if both children are greater than the parent: done

- otherwise, swap the smaller of the two children with
the parent, repeat

+ Called “percolate down” or “reheap down”
* preserves ordering property
* O(log n)

33

Heap: deleteMin()

Figure 21.10 Creation of the hole at the root.

@ _®\h

" D) @\'\ i6)

§ B © B) & @%
O®® 31 @?@gﬂ

Figure 21.11 The next two steps in the deleteMin operation.

AN

@

0) e R OS ®
@ & ® D & ®
®O® 31 clele)

Figure 21.12 The Last two steps in the deleteMin operation.

34

—————

