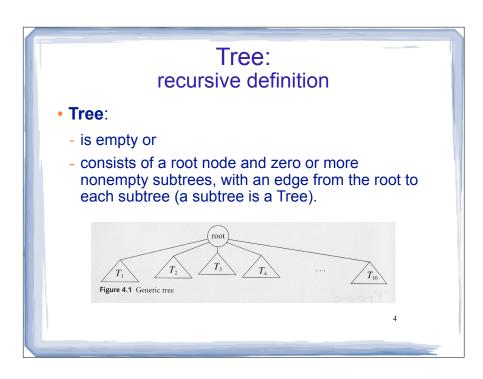
Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Gaddis ch. 20, Main + Savitch: ch. 10, 11.1-2

Tree: non-recursive definition

- Tree: set of nodes and directed edges
- root: one node is distinguished as the root
- Every node (except root) has exactly exactly one edge coming into it.
- Every node can have any number of edges going out of it (zero or more).
- Parent: source node of directed edge
- Child: terminal node of directed edge

2



Tree terms

- Path: sequence of (directed) edges
- Length of path: number of edges on the path
- **Depth of a node**: length of path from root to that node.
- Height of a node: length of longest path from node to a leaf.

5

Tree traversal

- Tree traversal: operation that converts the values in a tree into a list
 - Often the list is output
- Pre-order traversal
 - Print the data from the root node
 - Do a pre-order traversal on first subtree
 - Do a pre-order traversal on second subtree

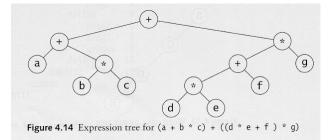
. . .

- Do a preorder traversal on last subtree

This is recursive. What's the base case?

6

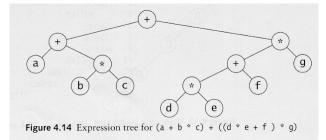
Preorder traversal: Expression Tree



• print node value, process left tree, then right

prefix notation (for arithmetic expressions)

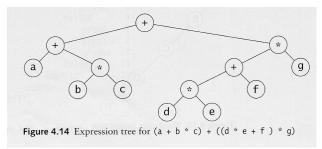
Postorder traversal: Expression Tree



process left tree, then right, then node

postfix notation (for arithmetic expressions)

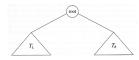
Inorder traversal: Expression Tree



- if each node has 0 to 2 children, you can do inorder traversal
- process left tree, print node value, then process right tree
 - a + b * c + d * e + f * g
- infix notation (for arithmetic expressions)

Binary Trees

• **Binary Tree**: a tree in which no node can have more than two children.



height: shortest: log₂(n) tallest: n

n is the number of nodes in the tree.

10

Binary Trees: implementation

• Structure with a data value, and a pointer to the left subtree and another to the right subtree.

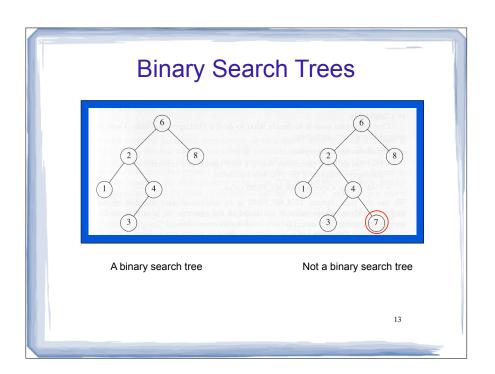
- Like a linked list, but two "next" pointers.
- This structure can be used to represent any binary tree.

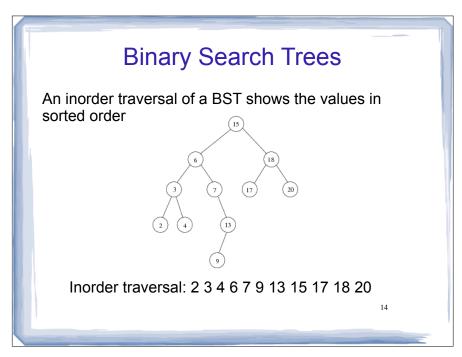
Binary Search Trees

- A special kind of binary tree
- A data structure used for efficient searching, insertion, and deletion.
- Binary Search Tree property:

For every node X in the tree:

- All the values in the **left** subtree are **smaller** than the value at X.
- All the values in the **right** subtree are **larger** than the value at X.
- Not all binary trees are binary search trees.

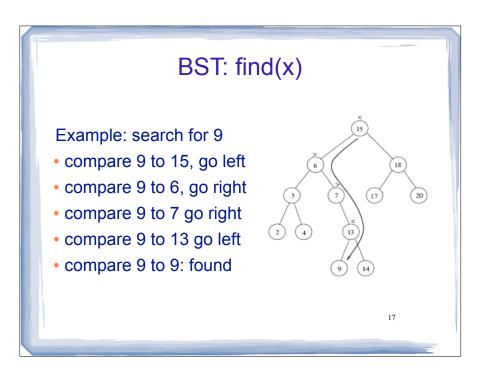


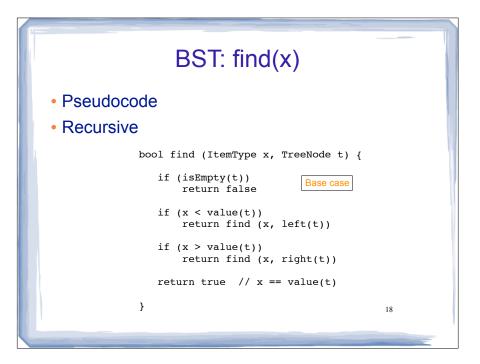


Binary Search Trees: operations

- insert(x)
- remove(x) (or delete)
- isEmpty() (returns bool)
- find(x) (returns bool)
- findMin() (returns ItemType)
- findMax() (returns ItemType)







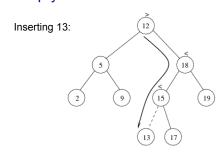
BST: findMin()

- Smallest element is found by always taking the left branch.
- Pseudocode
- Recursive
- Tree must not be empty

```
ItemType findMin (TreeNode t) {
   assert (!isEmpty(t))
   if (isEmpty(left(t)))
      return value(t)
   return findMin (left(t))
}
```

BST: insert(x)

- Algorithm is similar to find(x)
- If x is found, do nothing (no duplicates in tree)
- If x is not found, add a new node with x in place of the last empty subtree that was searched.



BST: insert(x)

- Pseudocode
- Recursive

```
bool insert (ItemType x, TreeNode t) {
   if (isEmpty(t))
      make t's parent point to new TreeNode(x)

   else if (x < value(t))
      insert (x, left(t))

   else if (x > value(t))
      insert (x, right(t))

   //else x == value(t), do nothing, no duplicates
}
```

Linked List example:

- Append x to the end of a singly linked list:
 - Pass the node pointer by reference
 - Recursive

```
void List::append (double x) {
    append(x, head);
}

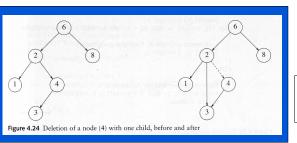
void List::append (double x, Node *& p) {
    if (p == NULL) {
        p = new Node();
        p->data = x;
        p->next = NULL;
    }
    else
        append (x, p->next);
}
```

BST: remove(x)

- Algorithm is starts with finding(x)
- If x is not found, do nothing
- If x is not found, remove node carefully.
 - Must remain a binary search tree (smallers on left, biggers on right).

BST: remove(x)

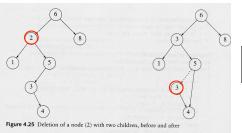
- Case 1: Node is a leaf
 - Can be removed without violating BST property
- Case 2: Node has one child
 - Make parent pointer bypass the Node and point to child



Does not matter if the child is the left or right child of deleted node

BST: remove(x)

- Case 3: Node has 2 children
 - Replace it with the minimum value in the right subtree
 - Remove minimum in right:
 - will be a leaf (case 1), or have only a right subtree (case 2)
 --cannot have left subtree, or it's not the minimum



remove(2): replace it with the minimum of its right subtree (3) and delete that node.

25

Binary heap data structure

- A binary heap is a special kind of binary tree
 - has a restricted structure (must be complete)
 - has an ordering property (parent value is smaller than child values)
- NOT a Binary Search Tree!
- Used in the following applications
 - Priority queue implementation: supports enqueue and deleteMin operations in O(log N)
 - Heap sort: another O(N log N) sorting algorithm.

26

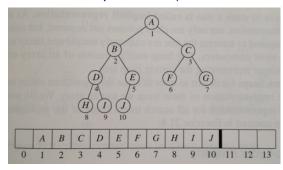
Binary Heap: structure property

- Complete binary tree: a tree that is completely filled
 - every level except the last is completely filled.
- the bottom level is filled left to right (the leaves are as far left as possible).

27

Complete Binary Trees

- A complete binary tree can be easily stored in an array
 - place the root in position 1 (for convenience)



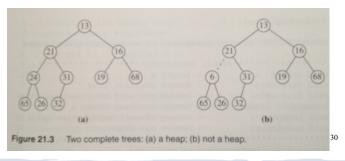
Complete Binary Trees Properties

- In the array representation:
 - put root at location 1
 - use an int variable (size) to store number of nodes
 - for a node at position i:
 - left child at position 2i (if 2i <= size, else i is leaf)
 - right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
 - parent is in position floor(i/2) (or use integer division)

29

Binary Heap: ordering property

- In a heap, if X is a parent of Y, value(X) is less than or equal to value(Y).
 - the minimum value of the heap is always at the root.



Heap: insert(x)

- · First: add a node to tree.
- must be placed at next available location, size+1, in order to maintain a complete tree.
- Next: maintain the ordering property:
- if x is greater than its parent: done
- else swap with parent, repeat
- Called "percolate up" or "reheap up"
- preserves ordering property

Heap: deleteMin()

- Minimum is at the root, removing it leaves a hole.
 - The last element in the tree must be relocated.
- First: move last element up to the root
- Next: maintain the ordering property, start with root:
- if both children are greater than the parent: done
- otherwise, swap the smaller of the two children with the parent, repeat
- · Called "percolate down" or "reheap down"
- preserves ordering property
- O(log n)

