—

Hash Tables

CS 5301
Fall 2013

Jill Seaman

Main + Savitch: chapter 12.2-3
Weiss: chapter 20

[o]
[11
[2]
[31]
[4]

[97]
[98]

[99]

Using a hash function

values

Empty

4501

Empty

7803

Empty

Empty

2298

3699

HandyParts company

makes no more than 100
different parts. But the

parts all have four digit numbers.

This hash function can be used to
store and retrieve parts in an array.

Hash(partNum) = partNum % 100

4

What are hash tables?

* A Hash Table is used to implement a set (or
a search table), providing basic operations

in constant time:

- insert

- remove (optional)

- find

- makeEmpty (need not be constant time)

* It uses a function that maps an object in the
set (a key) to its location in the table.

* The function is called a hash function. |

[o]
[11
[2]
[31]
[4]

[97]
[98]

[99]

Placing elements in the array

values

Empty

4501

Empty

7803

Empty

Empty

2298

3699

Use the hash function
Hash(partNum) = partNum % 100
to place the element with

part number 5502 in the
array.

42

[o]
[11
[2]
[31]
[4]

[97]
[98]

[99]

[o]
[11
[2]
[31]
[4]

[97]
[98]

[99]

Placing elements in the array

values

Empty

4501

< 5502

7803

Empty

Empty

2298

3699

Next place part number
6702 in the array.

Hash(partNum) = partNum % 100
6702 % 100 = 2

But values|[2] is already
occupied.

COLLISION OCCURS

43

Resolving the collision

values

Empty

4501

5502

(7803

Empty

Empty

2298

3699

Still looking for a place for 6702
using the function

(HashValue + 1) % 100

45

[o]
[11
[2]
[31]
[4]

[97]
[98]

[99]

[o]
[11
[2]
[31]
[4]

[97]
[98]

[99]

How to resolve the collision?

values

Empty

4501

< 5502

7803

Empty

Empty

2298

3699

values

Empty

4501

5502

7803

C emey

Empty

2298

3699

One way is by linear probing.
This uses the following function

(HashValue + 1) % 100

repeatedly until an empty location
is found for part number 6702.

44

Collision resolved

Part 6702 can be placed at
the location with index 4.

46

[o]
[11
[2]
[31]
[4]

[97]
[98]

[99]

—

Collision resolved

values

Part 6702 is placed at

Empty

linear probing?

4501 the location with index 4.
5502
7803 | Where would the part with
(] o > number 4598 be placed using

Empty

2298

3699

Hashing concepts

Collision resolution: method for finding an
open spot in the table for a key that has
collided with another key already in the table.

Load Factor: the fraction of the hash table
that is full

may be given as a percentage: 50%

may be given as a fraction in the range from 0 to
1,asin: .5

47

—

Hash Table: where objects are stored by
according to their key (usually an array)

key: attribute of an object used for searching/
sorting

number of valid keys usually greater than number
of slots in the table

number of keys in use usually much smaller than
table size.

Hash function: maps keys to a Table index

Hashing concepts

Collision: when two separate keys hash to the
same location

10

Hash Function

Goals:

computation should be fast

should minimize collisions (good distribution)
Some issues:

should depend on ALL of the key
(not just the last 2 digits or first 3 characters,
which may not themselves be well distributed)

— I

Hash Function

* Final step of hash function is usually:
temp % size
- temp is some intermediate result
- size is the hash table size
- ensures the value is a valid location in the table

* Picking a value for size:

- Bad choices:

« a power of 2: then the result is only the lowest order bits of temp
(not based on whole key)

« a power of 10: result is only lowest order digits of decimal number

- Good choices: prime numbers
13

Linear Probing:
Example

* Insert: 89, 18, 49, 58, 69, hash(k) = k mod 10

‘ Collision Resolution:

’ Probing function (attempt i): hi(K) = (hash(K) + i) % tablesize‘
Empty Table | After 89 | After 18 | After49 | After 58 | After 69 49 is in 0 because
0 49 49 49 9 was full
1 58 58
3 9 58 is in 1 because
8, 9, 0 were full
3
i 69 is in 1 because
S 9, 0 were full
6
7
8 18 18 18 18
9 89 89 89 89 89 15

Linear Probing

¢ Insert: When there is a collision, search
sequentially for the next available slot

* Find: if the key is not at the hashed location,
keep searching sequentially for it.
- if it reaches an empty slot, the key is not found

* Problem: if the the table is somewhat full, it
may take a long time to find the open slot.

* Problem: Removing an element in the middle
of a chain

Collision Resolution:
Separate chaining
* Use an array of linked lists for the hash table
 Each linked list contains all objects that hashed to that
location i 1o
- no collisions 1 1 ei[3-1 1
2 5 e
3 "
E(?(S)h:l;né/:on?g is still: 4 i ml l ;
5 2% [+
6| 31}
7 RS
8 T2
0 ESESENE “

Separate Chaining

* To insert a an object:

- compute hash(k)

- insert at front of list at that location (if empty, make first node)
* To find an object:

- compute hash(k)

- search the linked list there for the key of the object
* To delete an object:

- compute hash(k)

- search the linked list there for the key of the object

- if found, remove it

