
1

Week 3
Pointers, References, Arrays & Structures

Gaddis: Chapters 6, 7, 9, 11

CS 5301
Fall 2013

Jill Seaman

2

Arguments passed by value

! Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

! It is implemented using variable initialization
(behind the scenes):

! Changes to the parameter in the function body
do not affect the value of the argument in the
call

! The parameter and the argument are stored in
separate variables; separate locations in
memory.

int param = argument;

3

Example: Pass by Value

!
#include <iostream>
using namespace std;

void changeMe(int);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 12

int myValue = number;

changeMe failed to change the argument!
4

Parameter passing by Reference

! Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument (no copying).

! Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it:

! A reference parameter acts as an alias to its
argument, it is NOT a separate storage location.

! Changes to the parameter in the function DO
affect the value of the argument

void changeMe (int &myValue);

5

Example: Pass by Reference

!
#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int &myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 200

myValue is an alias for number,
only one shared variable

6

Arrays
! An array is:

- A series of elements of the same type
- placed in contiguous memory locations
- that can be individually referenced by adding an

index to a unique identifier.
! To declare an array:

- datatype is the type of the elements
- identifier is the name of the array
- size is the number of elements (constant)

int numbers[5];datatype identifier [size];

7

Array initialization
! To specify contents of the array in the definition:

- creates an array of size 3 containing the
specified values.

- creates an array containing the specified values
followed by 7 zeros (partial initialization).

- creates an array of size 3 containing the
specified values (size is determined from list).

float scores[] = {86.5, 92.1, 77.5};

float scores[3] = {86.5, 92.1, 77.5};

float scores[10] = {86.5, 92.1, 77.5};

8

Array access
! to access the value of any of the elements of the

array individually as if it was a normal variable:

- scores[2] is a variable of type float
- use it anywhere a float variable can be used.

! rules about subscripts:
- always start at 0, last subscript is size-1
- must have type int but can be any expression

! watchout: brackets used both to declare the array
and to access elements.

scores[2] = 89.5;

9

Arrays: operations

! Valid operations over entire arrays:
− function call: myFunc(scores,x);

! Invalid operations over structs:
− assignment: array1 = array2;
− comparison: array1 == array2
− output: cout << array1;
− input: cin >> array2;
− Must do these element by element, probably

using a for loop
10

Example: Processing arrays

const int NUM_SCORES = 8;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
 cin >> scores[i];
}

int total = 0; //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
 total = total + scores[i];
}
double average =
 static_cast<double>(total) / NUM_SCORES;

Computing the average of an array of scores:

! In the function definition, the parameter type is a
variable name with an empty set of brackets: []

- Do NOT give a size for the array inside []

! In the prototype, empty brackets go after the
element datatype.

! In the function call, use the variable name for the
array.

! An array is always passed by reference.
11

Arrays as parameters

void showArray(int values[], int size)

void showArray(int[], int)

showArray(numbers, 5)

12

Example: Partially filled arrays
int sumList (int list[], int size) {//sums elements in list array
 int total = 0;
 for (int i=0; i < size; i++) {
 total = total + list[i];
 return total;
}
const int CAPACITY = 100;
int main() {
 int scores[CAPACITY];
 int count = 0; //tracks number of elems in array
 cout << “Enter the programming assignment scores:” << endl;
 cout << “Enter -1 when finished” << endl;
 int score;
 cin >> score;
 while (score != -1 && count < CAPACITY) {
 scores[count] = score;
 count++;
 cin >> score;
 }
 int sum = sumList(scores,count);
}

sums from position 0 to size-1,
even if the array is bigger.

pass count, not CAPACITY

13

Multidimensional arrays

! multidimensional array: an array that is
accessed by more than one index

! Initialization:

- First row: 4,6,3
- Second row: 12, 7, 15
- etc.

int table[2][5]; // 2 rows, 5 columns
table[0][1] = 10; // puts 10 in first row,
 // second column

int a[4][3] = {4,6,3,12,7,15,41,32,81,52,11,9};

14

Multidimensional arrays

! when using a 2D array as a parameter, you must
specify the number of columns:

void myfunction(int vals[][3], int rows) {
 for (int i = 0; i < rows; ++i) {
 for (int j = 0; j < 3; ++j)
 cout << vals[i][j] << " ";
 cout << "\n";
 }
}
int main() {
 int a[4][3] = {4,6,3,12,7,15,41,32,81,52,11,9};
 ...
 myfunction(a,4);
 ...
}

15

Structures
! A structure stores a collection of objects of

various types
! Each element in the structure is a member, and

is accessed using the dot member operator.

Student student1, student2;
student1.name = “John Smith”;
Student student3 = {123456,”Ann Page”,22,”Math”};

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

Defines a new data type

Defines new variables

16

Structures: operations

! Valid operations over entire structs:
− assignment: student1 = student2;
− function call: myFunc(gradStudent,x);

! Invalid operations over structs:
− comparison: student1 == student2
− output: cout << student1;
− input: cin >> student2;
− Must do these member by member

void myFunc(Student, int); //prototype

17

Arrays of Structures

! You can store values of structure types in arrays.

! Each student is accessible via the subscript
notation.

! Members of structure accessible via dot notation

Student roster[40]; //holds 40 Student structs

roster[0] = student1;

cout << roster[0].name << endl;

18

Pointers

! Pointer: a variable that stores the address of another
variable, providing indirect access to it.

! The address operator (&) returns the address of a
variable.

! An asterisk is used to define a pointer variable

! “ptr is a pointer to an int”. It can contain addresses of
int variables.

int x;
cout << &x << endl; // 0xbffffb0c

int *ptr;

ptr = &x;

19

Pointers

! The unary operator * is the dereferencing operator.
! *ptr is an alias for the variable that ptr points to.

! Initialization:

! ptr is a pointer to an int, and it is initialized to the
address of x.

int x = 10;
int *ptr; //declaration, NOT dereferencing
ptr = &x; //ptr gets the address of x
*ptr = 7; //the thing ptr pts to gets 7

int x = 10;
int *ptr = &x; //declaration, NOT dereferencing

20

Pointers as Function Parameters

! Use pointers to implement pass by reference.

! How is it different from using reference
parameters?

//prototype: void changeVal(int *);

void changeVal (int *val) {
 *val = *val * 11;
}

int main() {
 int x;
 cout << "Enter an int " << endl;
 cin >> x;
 changeVal(&x);
 cout << x << endl;
}

21

Pointers and Arrays

! You can treat an array variable as if it were a pointer
to its first element.
int numbers[] = {10, 20, 30, 40, 50};

cout << “first: ” << numbers[0] << endl;
cout << “first: ” << *numbers << endl;

cout << &(numbers[0]) << endl;
cout << numbers << endl;

first: 10
first: 10
0xbffffb00
0xbffffb00

Output:

22

Pointer Arithmetic
! When you add a value n to a pointer, you are actually

adding n times the size of the data type being
referenced by the pointer.

! Note: array[index] is equivalent to *(array + index)

int numbers[] = {10, 20, 30, 40, 50};

// sizeof(int) is 4.
// Let us assume numbers is stored at 0xbffffb00
// Then numbers+1 is really 0xbffffb00 + 1*4, or 0xbffffb04
// And numbers+2 is really 0xbffffb00 + 2*4, or 0xbffffb08
// And numbers+3 is really 0xbffffb00 + 3*4, or 0xbffffb0c

cout << “second: ” << numbers[1] << endl;
cout << “second: ” << *(numbers+1) << endl;

cout << "size: " << sizeof(int) << endl;
cout << numbers << endl;
cout << numbers+1 << endl;

second: 20
second: 20
size: 4
0xbffffb00
0xbffffb04

Output:

23

Pointers and Arrays
! pointer operations can be used with array

variables.

! subscript operations can be used with pointers.

int list[10];
cin >> *(list+3);

int list[] = {1,2,3};
int *ptr = list;
cout << ptr[2];

24

Pointers to structures

! We can define pointers to structures

! To access the members via the pointer:

! dot operator has higher precedence, so use ():

! or equivalently, use ->:

Student s1 = {12345,“Jane Doe”, 18, “Math”};
Student *ptr = &s1;

cout << *ptr.name << end; // ERROR: *(ptr.name)

cout << (*ptr).name << end;

cout << ptr->name << end;

