Classes and Obijects

Week 4

Gaddis: 13.1-13.12 (classes)
15.1-15.5 (inheritance)

CS 5301
Fall 2013

Jill Seaman

The Class

* Aclass in C++ is similar to a structure.
* A class contains:

- variables (members) AND

- functions (member functions or methods)
* Members can be:

- private: inaccessible outside the class
(this is the default)

- public: accessible outside the class.

Example class: Time

class declaration with functions defined inline

class Time { //new data type

private:

int hour;
int minute;

public:

void setHour(int hr) { hour = hr; }

void setMinute(int min) { minute = min; }

int getHour() const { return hour; }

int getMinute() const { return minute; }
void display() const { cout << hour << “:”

<< minute; }

Using Time class in a driver

int main()
Time tl, t2;

tl.setHour(6);
tl.setMinute(30);
cout << tl.getHour() << endl;

t2.setHour(9);
t2.setMinute(20);
t2.display();
cout << endl;

Example class: Time (version 2)

.

class declaration with functions defined outside

class Time {
private:
int hour;
int minute;

//new data type

public:
void setHour(int);
void setMinute(int);
int getHour() const;
int getMinute() const;
void display() const;
}i
void Time::setHour(int hr) {
hour = hr; // hour is a member var

void Time::setMinute(int min) {
minute = min; // minute is a member var

int Time::getHour() const {
return hour;

int Time::getMinute() const {

return minute;

}

void Time::display() const {
cout << hour << “:” << minute;

}

—

Access rules

Used to control access to members of the class

public: can be accessed by functions inside
AND outside of the class

private: can be called by or accessed by only
functions that are members of the class (inside)

int main()
Time tl1;

tl.setHour(6);
tl.setMinute(30);

cout << tl.hour << endl; //Error, hour is private

' Separation of Interface from

Implementation

Class declarations are usually stored in their
own header files (Time.h)

called the specification file
filename is usually same as class name.

Member function definitions are stored in a
separate file (Time.cpp)

called the class implementation file
it must #include the header file,

Any program/file using the class must include
the class’s header file (#include “Time.h”) -

—

Time.h

Time class, separate files

Driver.cpp

#include <string>
using namespace std;

// models a 12 hour clock
class Time {

private:
int hour;
int minute;

public:
void setHour(int);
void setMinute(int);
int getHour() const;

void display() const;

int getMinute() const;

//Example using Time class
#include<iostream>
#include "Time.h"

using namespace std;

int main() {
Time t;
t.setHour(12);
t.setMinute(58);
t.display();
cout <<endl;
t.setMinute(59);
t.display();
cout << endl;

—

Time class, separate files

Time.cpp

#include <iomanip>
#include <sstream>
#include "Time.h"
using namespace std;

void Time::setHour(int hr) {
hour = hr;

}

minute = min;

}

int Time::getHour() const {
return hour;

}

int Time::getMinute() const {
return minute;

}

void Time::setMinute(int min) { | void Time::display() const {

cout << hour << “:” << minute;

}

—

Note no return type,

onstructor Declaration (and use)

same name as class:

#include <string>
using namespace std;

// models a 12 hour clock
class Time {

private:
int hour;
int minute;

public:
Time();
Time (int,int);

void setHour(int);
void setMinute(int);
int getHour() const;
int getMinute() const;

void display() const;

//Example using Time class
#include<iostream>
#include "Time.h"

using namespace std;

int main() {
Time t;
t.display();
cout <<endl;

Time t1(10,30);
tl.display();
cout << endl;

—

A constructor is a member function with the same
name as the class.

Constructors

It is called automatically when an object is created
It performs initialization of the new object
It has no return type

It can be overloaded: more than one constructor
function, each with different parameter lists.

A constructor with no parameters is the default
constructor.

If your class defines no constructors, C++ will provide
a default constructor automatically.

Note no return type, prefixed with Class::

// file Time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

Constructor Definition

#include "Time.h"

Output:

Time::Time() { -
hour = 12; :}g:go
minute = 0; i

}

Time::Time(int hr, int min) {
hour = hr;
minute = min;

Member function that is automatically called when an
object is destroyed

—

Special constructor used when a newly created
object is initialized using another object of the

Destructors Copy Constructors

Destructor name is ~classname, e.g., ~Time same class.
Has no return type; takes no arguments Time t1;

. . Time t2 = tl;
Only one destructor per class, i.e., it cannot be Time t3 (tl1);

overloaded, cannot take arguments o _
The default copy constructor copies field-to-field

If the class allocates dynamic memory, the destructor (member-wise assignment)

should release (delete) it.

class Time Default copy constructor works fine in most
public: cases
Time(); // Construct tot . .
~Time(); // Destructor prototype : You can re-define it for your class as need&d.
N N

((

Composition Inheritance
When one class contains another as a member: Provides a way to create a new class from an existing
This class declaration uses inlined function definitions class
lass calls // must #include Time.h The new class is a specialized version of the existing
private: CIaSS

Time calls[10]; // times of last 10 phone calls
// array is initialized using default constructor

Base class (or parent)

public:
calls() { } Derived class (or child) — inherits from the base class
void set(int i; Time t) { calls[i] = t; } The derived class has access to all the public (and
‘{'Oid d%gpj-cayAél 0,) | protected) data and function members of the base
or (int i=0; i ; 1 .
calls[i].display(); //calls member function class (bUt NOT to the prlvate memberS)
cout << “# “;

}

} 15 16

}i

—

Class Access Specification

Determines how private, protected, and public
members of base class are inherited by the derived

class

class Grade {
private:
char letter;
float score;
void calcGrade();
public:
void setScore(float);

class Test: public Grade {
private:
int numQuestions;
float pointsEach;
int numMissed;
public:
Test(int, int);

—

class Grade

private members:

public members:

char letter;
float score;
void calcGrade () ;

void setScore (float)
float getScore();
char getLetter();

When Test class inherits
from Grade class using
public class access, it

Class Access Specification

class Test : public Grade

private members:
int numQuestions;
float pointsEach;
int numMissed;
public members:
Test (int, int);

private members:
int numQuestions:
float pointsEach;
int numMissed;
public members:
Test (int, int);

float getscore(); looks like this: void setScore (float);
char getLetter(); float getScore();
} An instance of Test contains letter and score, float getletter();
but they are not accessible from inside
class Test extends class Grade. 17 the Test member functions. 18

. , .

Constructors and Destructors:

example

l Constructors and Destructors in
Base and Derived Classes

class BaseClass {
public:
BaseClass() // Constructor
{ cout << "This is the BaseClass constructor.\n"; }

Derived classes can have their own constructors and
destructors

When an object of a derived class is created, the base
class’s (default) constructor is executed first, followed
by the derived class’s constructor

~BaseClass() // Destructor
{ cout << "This is the BaseClass destructor.\n"; }

}i

class DerivedClass : public BaseClass {
public:
DerivedClass() // Constructor
{ cout << "This is the DerivedClass constructor.\n"; }

When an object of a derived class is destroyed, its
destructor is called first, then that of the base class

~DerivedClass() // Destructor
{ cout << "This is the DerivedClass destructor.\n"; }

19 20

Constructors and Destructors:

example

int main() {
cout << "We will now define a DerivedClass object.\n";

DerivedClass object;

cout << "The program is now going to end.\n";

Output:

We will now define a DerivedClass object.
This is the BaseClass constructor.

This is the DerivedClass constructor.

The program is now going to end.

This is the DerivedClass destructor.

This is the BaseClass destructor.

21

| Passing Arguments to a non-default
Base Class Constructor

Allows programmer to choose among multiple base
class constructors

Specify arguments to base constructor in the derived
constructor function header:
Square::Square(int side) : Rectangle(side, side) {

// code for Square goes here, if any

}

//assuming Square is derived from Rectangle

Must specify a call to a base class constructor if base
class has no default constructor

22

Redefining Base Class Functions

Redefining function: a function in a derived class that
has the same name and parameter list as a function
in the base class

Not the same as overloading — with overloading,
parameter lists must be different

Objects of base class use base class version of
function; objects of derived class use derived class
version of function.

To call the base class version from the derived class
version, you must prefix the name of the function with
the base class name and the scope resolution
operator 3

.

Redefining Base Class Functions:

example
class Animal {
private:
string species;
public:
Animal() { species "Animal";}

Animal (string spe) { species = spe ;}
void display()
{cout << "species " << species; }

}i
class Primate: public Animal {

private:

int heartCham;
public:

Primate() : Animal("Primate") { }

Primate(int in) : Animal ("Primate") { heartCham = in; }

void display()
{ Animal::display();
cout << ", # of heart chambers " << heartCham; }
i b4

Redefining Base Class Functions:

example

int main()

{
Animal jasper; // Animal()
Primate fred(4); // Primate(int)
jasper.display(); cout << endl;
fred.display(); cout << endl;

}

Output:

species Animal
species Primate, # of heart chambers 4

25

