
1

Overloading Operators
and Dynamic Memory Allocation

Week 5

Gaddis: 14.5

CS 5301
Fall 2013

Jill Seaman
2

9.8 Dynamic Memory Allocation

! When a function is called, memory for local
variables is automatically allocated.

! When a function exits, memory for local variables
automatically disappears.

! Must know ahead of time the maximum number of
variables you may need.

! Dynamic Memory allocation allows your program to
create variables on demand, during run-time.

3

The new operator

! “new” operator requests dynamically allocated
memory for a certain data type:

! new operator returns address of newly created
anonymous variable.

! use dereferencing operator to access it:

int *iptr;
iptr = new int;

*iptr = 11;
cin >> *iptr;
int value = *iptr / 3;

4

Dynamically allocated arrays

! dynamically allocate arrays with new:

! Program will throw an exception and terminate if
not enough memory available to allocate

int *iptr; //for dynamically allocated array
int size;

cout << “Enter number of ints: “;
cin >> size;
iptr = new int[size];

for (int i=1; i<size; i++) {
 iptr[i] = i;
}

5

delete!
! When you are finished using a variable created

with new, use the delete operator to destroy it:

! Do not “delete” pointers whose values were NOT
dynamically allocated using new!

! Do not forget to delete dynamically allocated
variables (Memory Leaks!!).

int *ptr;
double *array;

ptr = new int;
array = new double[25];
. . .
delete ptr;
delete [] array; // note [] required for dynamic arrays!

6

9.9 Returning Pointers from Functions

! functions may return pointers:

! The returned pointer must point to
− dynamically allocated memory OR
− an item passed in via an argument

int * findZero (int arr[]) {
 int *ptr;
 ptr = arr;
 while (*ptr != 0)
 ptr++;
 return ptr;
}

NOTE: the return type of this function is
(int *) or pointer to an int.

NOTE: if the function returns dynamically allocated memory,
then it is the responsibility of the calling function to delete it.

7

Returning Pointers from Functions:
duplicateArray

int a [5] = {11, 22, 33, 44, 55};
int *b = duplicateArray(a, 5);
for (int i=0; i<5; i++)
 if (a[i] == b[i])
 cout << i << “ ok” << endl;
delete [] b; //caller deletes mem

0 ok
1 ok
2 ok
3 ok
4 ok

Output

int *duplicateArray (int *arr, int size) {

 int *newArray;
 if (size <= 0) //size must be positive
 return NULL; //NULL is 0, an invalid address

 newArray = new int [size]; //allocate new array

 for (int index = 0; index < size; index++)
 newArray[index] = arr[index]; //copy to new array

 return newArray;
}

8

11.9: Pointers to Structures

! Given the following Structure:

! We can define a pointer to a structure

! Now studentPtr points to the s1 structure.

struct Student {
 string name; // Student’s name
 int idNum; // Student ID number
 int creditHours; // Credit hours enrolled
 float gpa; // Current GPA
};

Student s1 = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &s1;

9

Pointers to Structures

! How to access a member through the pointer?

! dot operator has higher precedence than the
dereferencing operator, so:

! So this will work:

Student s1 = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &s1;

cout << *studentPtr.name << end; // ERROR

*studentPtr.name *(studentPtr.name) is equivalent to

cout << (*studentPtr).name << end; // WORKS

studentPtr is not a structure!

10

structure pointer operator: ->

! Due to the “awkwardness” of the notation, C has
provided an operator for dereferencing structure
pointers:

! The structure pointer operator is the hyphen (-)
followed by the greater than (>), like an arrow.

! In summary:

studentPtr->name (*studentPtr).nameis equivalent to

sptr->name // a member of a structure pointed to by sptr

s1.name // a member of structure s1

11

Dynamically Allocating Structures

! Structures can be dynamically allocated with new:

! Arrays of structures can also be dynamically
allocated:

Student *sptr;
sptr = new Student;

sptr->name = “Jane Doe”;
sptr->idNum = 12345;
...
delete sptr;

Student *sptr;
sptr = new Student[100];
sptr[0].name = “John Deer”;
...
delete [] sptr; 12

in 13.3: Pointers to Objects

! We can define pointers to objects, just like
pointers to structures

! We can access public members of the object
using the structure pointer operator (->)

Time t1(12,20);
Time *timePtr;
timePtr = &t1;

timePtr->addMinute();
cout << timePtr->display() << endl;

Output:
12:21

13

Dynamically Allocating Objects

! Objects can be dynamically allocated with new:

! Arrays of objects can also be dynamically
allocated:

Time *tptr;
tptr = new Time(12,20);

...
delete tptr;

Time *tptr;
tptr = new Time[100];
tptr[0].addMinute();
...
delete [] tptr;

You can pass arguments
to a constructor using
this syntax.

It can use only the default
constructor to initialize the
elements in the new array.

14

IntCell declaration

! Problem with the default copy constructor:
what if object contains a pointer?

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class IntCell
{
 private:
 int *storedValue; //ptr to int

 public:
 IntCell (int initialValue);
 ~IntCell();
 int read () const;
 void write (int x);
};

15

IntCell Implementation

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include “IntCell.h”

IntCell::IntCell (int initialValue) {
 storedValue = new int;
 *storedValue = initialValue;
}

IntCell::~IntCell() {
 delete storedValue;
}

int IntCell::read () const {
 return *storedValue;
}

void IntCell::write (int x) {
 *storedValue = x;
}

16

Problem with member-wise
assignment

! What we get from member-wise assignment in
objects containing dynamic memory (ptrs):

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell object1(5);
IntCell object2 = object1; // calls copy constructor

 //object2.storedValue=object1.storedValue

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

What is output? 5
13 or

13
13

17

Programmer-Defined
Copy Constructor

! Prototype and definition of copy constructor:

! Copy constructor takes a reference parameter
to an object of the class
- otherwise it would use the copy constructor to

initialize the obj parameter, which would call the
copy constructor: this is an infinite loop

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell::IntCell(const IntCell &obj) {
 storedValue = new int;
 *storedValue = obj.read(); //or *(obj.storedValue)
}

static int getObjectCount();

IntCell(const IntCell &obj); Add to class declaration

18

Programmer-Defined
Copy Constructor

! Each object now points to separate dynamic
memory:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell object1(5);
IntCell object2 = object1; //now calls MY copy constr

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

object1 object2

storedValue

135

5
13

Output:

storedValue

19

Example class: Time
class declaration with functions defined inline

class Time { //new data type
 private:
 int hour;
 int minute;
 public:
 Time() { hour = 12; minute = 0; }
 Time(int hr,int min) { hour = hr; minute = min; }
 void setHour(int hr) { hour = hr; }
 void setMinute(int min) { minute = min; }
 int getHour() const { return hour; }
 int getMinute() const { return minute; }
 void display() const { cout << hour << “:” << minute; }
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

We will use this for operator overloading examples:

20

14.5 Operator Overloading
! Operators such as =, +, <, and others can be

defined to work for objects of a user-defined class
! The name of the function defining the over-loaded

operator is operator followed by the operator
symbol:
operator+ to define the + operator, and
operator= to define the = operator

! Just like a regular member function:
- Prototype goes in the class declaration
- Function definition goes in implementation file

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

21

Invoking an Overloaded Operator

! Operator can be invoked (called) as a member
function:

! It can also be invoked using the more
conventional syntax:

! Both call the same operator- function, from the
perspective of object1

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int minutes = object1.operator-(object2);

static int getObjectCount();

int minutes = object1 - object2;
This is the main reason to overload operators,
so you can use this syntax for objects of your class

22

Example: minus for Time objects

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time {
! private:
! int hour, minute;
! public:
! int operator- (Time right);
};

int Time::operator- (Time right) { //Note: 12%12 = 0
 return (hour%12)*60 + minute -
 ((right.hour%12)*60 + right.minute);
}

//in a driver:
Time time1(12,20), time2(4,40);
int minutesDiff = time2 - time1;
cout << minutesDiff << endl; Output: 260

Subtraction

23

Overloading == and < for Time

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bool Time::operator== (Time right) {
 if (hour == right.hour &&
 minute == right.minute)
 return true;
 else
 return false;
}

bool Time::operator< (Time right) {
 if (hour == right.hour)
 return (minute < right.minute);
 return (hour%12) < (right.hour%12);
}

//in a driver:
Time time1(12,20), time2(12,21);
if (time1<time2) cout << “correct” << endl;
if (time1==time2) cout << “correct again”<< endl;

24

Overloading + for Time

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time {
 private:
 int hour, minute;
 public:
 Time operator+ (Time right);
};
Time Time::operator+ (Time right) { //Note: 12%12 = 0
 int totalMin = (hour%12)*60 + (right.hour%12)*60
 + minute + right.minute;
 int h = totalMin / 60;
 if (h==0) h = 12; //convert 0:xx to 12:xx
 Time result(h, totalMin % 60);
 return result;
}
//in a driver:
 Time t1(12,5);
 Time t2(2,50);
 Time t3 = t1+t2;
 t3.display();

Output: 2:55

25

Overloading Prefix ++ for Time

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time {
 private:
 int hour, minute;
 public:
 Time operator++ ();
};
Time Time::operator++ (Time right) { //Note: 12%12 = 0
 if (minute == 59) {
 minute = 0;
 if (hour == 12)
 hour = 0;
 } else {
 minute++;
 }
 return *this; //this points to the calling instance
}
//in a driver:
 Time t1(12,55);
 Time t2 = ++t1;
 t1.display(); cout << “ “; t2.display();

Output: 12:56 12:56

26

Overload = for IntCell

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class IntCell {
 private:
 int *value;
 public:
 IntCell(const IntCell &obj);
 IntCell(int);
 ~IntCell();
 int read() const;
 void write(int);
 void operator= (IntCell rhs);
};

void IntCell::operator= (IntCell rhs) {
 write(rhs.read());
}

//in a driver:
IntCell object1(5), object2(0);
object2 = object1;
object2.write(13);
cout << object1.read() << endl;

Output: 5

Now = for IntCell will not
use member-wise assignment

