
1

Polymorphism & Virtual Methods

Week 6

Gaddis:15.6-15.8

CS 5301
Fall 2013

Jill Seaman

2

Polymorphism
! The Greek word poly means many, and the

Greek word morphism means form.
! So, polymorphism means 'many forms'.
! In object-oriented programming (OOP),

polymorphism refers to
- identically named (and redefined) methods
- that have different behavior depending on the

(specific derived) type of object that they are called
on.

3

Example of polymorphism?
class Animal {
 private:
 ...
 public:
 void speak() { cout << “none ”; }
};

class Cat : public Animal {
 private:
 ...
 public:
 void speak() { cout << “meow “; }
};
class Dog : public Animal {
 private:
 ...
 public:
 void speak() { cout << “bark “; }
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

4

Example of polymorphism?, part 2
void f (Animal a) {
 a.speak();
}

int main() {
 Cat c;
 Dog d;
 f(c);
 f(d);
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

! IF the output is “meow bark”, this (function f)
is an example of polymorphism.
- The behavior of a in f would depend on its

specific (derived type).
! IF the output is “none none”, it’s not

polymorphism.

5

Polymorphism in C++

! Polymorphism in C++ is supported through:
- virtual methods AND
- pointers to objects OR reference variables/

parameters.
! without these, C++ determines which method to

invoke at compile time (using the variable type).
! when virtual methods and pointer/references are

used together, C++ determines which method to
invoke at run time (using the specific type of the
instance currently referenced by the variable).

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

6

Virtual methods

! Virtual member function: function in a base class
that expects to be redefined in derived class

! Function defined with key word virtual:

! Supports dynamic binding: functions bound at
run time to function that they call

! Without virtual member functions, C++ uses
static (compile time) binding

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

virtual void Y() {...}

7

Example virtual methods

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Animal {
 public:
 virtual void speak();
 int age();
};
class Cat : public Animal
{
 public:
 virtual void speak(); //redefining a virtual
 int age(); //redefining a normal function
};
int main()
{
 Cat morris;
 Animal *pA = &morris;
 pA -> age(); // Animal::age() is invoked (base) (not virtual)
 pA -> speak(); // Cat::speak() is invoked (derived)
...
}

8

Virtual methods

! In compile-time binding, the data type of the
pointer resolves which method is invoked.

! In run-time binding, the type of the object
pointed to resolves which method is invoked.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

void f (Animal &a) {
 a.speak();
}

int main() {
 Cat c;
 Dog d;
 f(c);
 f(d);
}

! Assuming speak is virtual,
and a is passed by
reference, the output is:

meow bark

9

Example version 1:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class COne {
 public:
 void vWhoAmI() { cout << "I am One" << endl; }
};
class CTwo : public COne {
 public:
 void vWhoAmI() { cout << "I am Two" << endl; }
};
class CThree : public CTwo {
 public:
 void vWhoAmI() { cout << "I am Three" << endl; }
};
int main() {
{
 COne *apCOne[3] = { new COne, new CTwo, new CThree };
 for (int i = 0; i < 3; i++)
 apCOne[i] -> vWhoAmI();
}

I am One
I am One
I am One

Output:
10

Example version 2:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class COne {
 public:
 virtual void vWhoAmI() { cout << "I am One" << endl; }
};
class CTwo : public COne {
 public:
 void vWhoAmI() { cout << "I am Two" << endl; }
};
class CThree : public CTwo {
 public:
 void vWhoAmI() { cout << "I am Three" << endl; }
};
int main() {
{
 COne *apCOne[3] = { new COne, new CTwo, new CThree };
 for (int i = 0; i < 3; i++)
 apCOne[i] -> vWhoAmI();
}

I am One
I am Two
I am Three

Output:

11

Abstract classes and
Pure virtual functions

• Pure virtual function: a virtual member function
that must be overridden in a derived class.

• Abstract base class contains at least one pure
virtual function:

• The = 0 indicates a pure virtual function
• Must have no function definition in the base

class.

virtual void Y() = 0;

12

Abstract classes and
Pure virtual functions

• Abstract base class: a class that can have no
objects (instances).

• Serves as a basis for derived classes that will
have objects

• A class becomes an abstract base class when
one or more of its member functions is a pure
virtual function.

13

Example: Abstract Class

! An abstract class may not be used as an
argument type, as a function return type,or as
the type of an explicit conversion.

! Pointers and references to an abstract class
may be declared.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class CShape {
 public:
 CShape () { }
 virtual void vDraw () const = 0; // pure virtual method
};

CShape CShape1; // Error: object of abstract class
CShape* pCShape; // Ok
CShape CShapeFun(); // Error: return type
void vg(CShape); // Error: argument type
CShape& rCShapeFun(CShape&); // Ok 14

Example: Abstract Class
! Pure virtual functions are inherited as pure

virtual functions.

! Or else:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class CAbstractCircle : public CShape {
 private:
 int m_iRadius;
 public:
 void vRotate (int) {}
 // CAbstractCircle ::vDraw() is a pure virtual function
};

class CCircle : public CShape {
 private:
 int m_iRadius;
 public:
 void vRotate (int) {}
 void vDraw(); //define here or in impl file
};

15

Heterogeneous collections

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Animal {
 private:
 string name;
 public:
 Animal(string n) {name = n;}
 virtual void speak() = 0;
};
class Cat : public Animal {
 public:
 Cat(string n) : Animal(n) { };
 void speak() {cout << "meow "; }
};
class Dog : public Animal {
 public:
 Dog(string n) : Animal(n) { };
 void speak() {cout << "bark "; }
};
class Pig : public Animal {
 public:
 Pig(string n) : Animal(n) { };
 void speak() {cout << "oink "; }
};

16

Heterogeneous collections
! Driver:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int main()
{
 Animal* animals[] = {
 new Cat("Charlie"),
 new Cat("Scamp"),
 new Dog("Penny"),
 new Cat("Libby"),
 new Cat("Patches"),
 new Dog("Milo"),
 new Pig("Wilbur") };

 for (int i=0; i< 7; i++) {
 animals[i]->speak();
 }
}

meow meow bark meow meow bark oink

