
1

Recursion

Week 7

Gaddis:19.1-19.4

CS 5301
Fall 2013

Jill Seaman

2

What is recursion?

! Generally, when something
contains a reference to itself

! Math: defining a function in terms
of itself

! Computer science: when a
function calls itself:
void message() {
 cout << “This is a recursive function.\n”;
 message();
}

int main() {

 message();

} What happens when this is executed?

3

How can a function call itself?

! Infinite Recursion:
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.

... 4

Recursive message() modified

! How about this one?
void message(int n) {
 if (n > 0) {
 cout << “This is a recursive function.\n”;
 message(n-1);
 }
}

int main() {

 message(5);
}

5

Tracing the calls

! 6 nested calls to message:

! depth of recursion (#times it calls itself) = 5.

message(5):
 outputs “This is a recursive function”
 calls message(4):
 outputs “This is a recursive function”
 calls message(3):
 outputs “This is a recursive function”
 calls message(2):
 outputs “This is a recursive function”
 calls message(1):
 outputs “This is a recursive function”
 calls message(0):
 does nothing, just returns

6

Why use recursion?
! It is true that recursion is never required to

solve a problem
- Any problem that can be solved with recursion can

also be solved using iteration.
! Recursion requires extra overhead: function call

+ return mechanism uses extra resources

! Some repetitive problems are more easily and
naturally solved with recursion
- the recursive solution is often shorter, more elegant,

easier to read and debug.

However:

7

How to write recursive functions
! Branching is required (If or switch)
! Find a base case

- one (or more) values for which the result of the
function is known (no repetition required to solve it)

- no recursive call is allowed here
! Develop the recursive case

- For a given argument (say n), assume the function
works for a smaller value (n-1).

- Use the result of calling the function on n-1 to form a
solution for n

8

Recursive function example
factorial

! Mathematical definition of n! (factorial of n)

! What is the base case?
- n=0 (result is 1)

! If we assume (n-1)! can be computed, how can
we get n! from that?
- n! = n * (n-1)!

if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x ... x n

9

Recursive function example
factorial

int factorial(int n) {

 if (n==0)
 return 1;

 else
 return n * factorial(n-1);

}

int main() {
 int number;

 cout << “Enter a number “;

 cin >> number;
 cout << “The factorial of “ << number << “ is “

 << factorial(number) << endl;
}

10

Tracing the calls

! Calls to factorial:

! Every call except the last makes a recursive call
! Each call makes the argument smaller

factorial(4):
 return 4 * factorial(3);
 calls factorial(3):
 return 3 * factorial(2);
 calls factorial(2):
 return 2 * factorial(1);
 calls factorial(1):
 return 1 * factorial(0);
 calls factorial(0):
 return 1;

=2 * 1 = 2

=3 * 2 = 6

=4 * 6 = 24

=1 * 1 = 1

11

Recursive functions over ints

! Many recursive functions (over integers) look
like this:

type f(int n) {
 if (n==0)
 //do the base case
 else
 // ... f(n-1) ...
}

12

Recursive functions over lists

! You can write recursive functions over lists using
the length of the list instead of n
- base case: length=0 ==> empty list
- recursive case: assume f works for list of length n-1,

what is the answer for a list with one more element?
! We will do examples with:

- arrays
- strings

13

Recursive function example
sum of the list

! Recursive function to compute sum of a list of
numbers

! What is the base case?
- length=0 (empty list) => sum = 0

! If we assume we can sum the first n-1 items in
the list, how can we get the sum of the whole list
from that?
- sum (list) = sum (list[0..n-2]) + list[n-1]

Assume I am given the answer to this
14

Recursive function example
sum of a list (array)

int sum(int a[], int size) { //size is number of elems

 if (size==0)
 return 0;

 else
 return sum(a,size-1) + a[size-1];

}

 sum(a,3) + a[3] =

 sum(a,2) + a[2] + a[3] =

 sum(a,1) + a[1] + a[2] + a[3] =
 sum(a,0) + a[0] + a[1] + a[2] + a[3] =

 0 + a[0] + a[1] + a[2] + a[3]

For a list with size = 4: sum(a,4)

The last elementcall sum on first n-1 elements

15

Recursive function example
count character occurrences in a string

! Recursive function to count the number of times
a specific character appears in a string

! We will use the string member function substr to
make a smaller string
- str.substr (int pos, int length);
- pos is the starting position in str
- length is the number of characters in the result

! char access: x[1] is the second element (‘e’)

string x = “hello there”;

cout << x.substr(3,5);
lo th

16

Recursive function example
count character occurrences in a string

int numChars(char target, string str) {

 if (str.empty()) {
 return 0;

 } else {
 int result = numChars(search, str.substr(1,str.size()));

 if (str[0]==target)

 return 1+result;
 else

 return result;
 }

}

int main() {

 string a = "hello";
 cout << a << numChars('l',a) << endl;

}

17

Three required properties
of recursive functions

! A Base case
- a non-recursive branch of the function body.
- must return the correct result for the base case

! Smaller caller
- each recursive call must pass a smaller version of

the current argument.
! Recursive case

- assuming the recursive call works correctly, the
code must produce the correct answer for the
current argument. 18

Recursive function example
greatest common divisor

! Greatest common divisor of two non-zero ints is
the largest positive integer that divides the
numbers evenly (without a remainder)

! This is a variant of Euclid’s algorithm:

! It’s a recursive definition
! If x < y, then x%y is x (so gcd(x,y) = gcd(y,x))
! This moves the larger number to the first position.

gcd(x,y) = y if y divides x evenly, otherwise:
gcd(x,y) = gcd(y,remainder of x/y) (or gcd(y,x%y) in c++)

19

Recursive function example
greatest common divisor

! Code:
int gcd(int x, int y) {

 cout << "gcd called with " << x << " and " << y << endl;

 if (x % y == 0) {

 return y;

 } else {

 return gcd(y, x % y);

 }

}

int main() {

 cout << "GCD(9,1): " << gcd(9,1) << endl;

 cout << "GCD(1,9): " << gcd(1,9) << endl;

 cout << "GCD(9,2): " << gcd(9,2) << endl;

 cout << "GCD(70,25): " << gcd(70,25) << endl;

 cout << "GCD(25,70): " << gcd(25,70) << endl;

}
20

Recursive function example
greatest common divisor

! Output:
gcd called with 9 and 1

GCD(9,1): 1

gcd called with 1 and 9

gcd called with 9 and 1

GCD(1,9): 1

gcd called with 9 and 2

gcd called with 2 and 1

GCD(9,2): 1

gcd called with 70 and 25

gcd called with 25 and 20

gcd called with 20 and 5

GCD(70,25): 5

gcd called with 25 and 70

gcd called with 70 and 25

gcd called with 25 and 20

gcd called with 20 and 5

GCD(25,70): 5

