Recursion

Week 7
Gaddis:19.1-19.4

CS 5301
Fall 2013
Jill Seaman

What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself:
void message() \{
cout << "This is a recursive function. $\backslash n$ "; message();
int main() \{
message();
What happens when this is executed?

Recursive message() modified

- How about this one?

```
```

void message(int n) {

```
```

void message(int n) {
if (n > 0) {
if (n > 0) {
cout << "This is a recursive function.\n";
cout << "This is a recursive function.\n";
message(n-1);
message(n-1);
}
}
}
}
int main() {
int main() {
message(5);
message(5);
}

```
```

}

```
```


How can a function call itself?

- Infinite Recursion:

```
This is a recursive function
This is a recursive function.
This is a recursive function.
This is a recursive function
This is a recursive function.
```


Tracing the calls

- 6 nested calls to message:

```
message(5):
    outputs "This is a recursive function"
    calls message(4):
    outputs "This is a recursive function"
    calls message(3):
        outputs "This is a recursive function"
            calls message(2):
            outputs "This is a recursive function"
            calls message(1):
                outputs "This is a recursive function"
                calls message(0):
                    does nothing, just returns
```

- depth of recursion (\#times it calls itself) $=5$.

Why use recursion?

- It is true that recursion is never required to solve a problem
- Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources

However:

- Some repetitive problems are more easily and naturally solved with recursion
- the recursive solution is often shorter, more elegant, easier to read and debug.

Recursive function example

factorial

- Mathematical definition of n ((factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x ... x n
```

-What is the base case?

- $\mathrm{n}=0$ (result is 1)
- If we assume ($\mathrm{n}-1$)! can be computed, how can we get n ! from that?
$-n!=n *(n-1)!$

Recursive function example factorial

```
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
int main() {
    int number;
    cout << "Enter a number ";
    cin >> number;
    cout << "The factorial of " << number << " is "
        << factorial(number) << endl;
}
```


Tracing the calls

- Calls to factorial:

```
factorial(4):
    return 4 * factorial(3); =4 * 6=24
    calls factorial(3):
        return 3 * factorial(2); =3*2=6
        calls factorial(2):
            return 2 * factorial(1); =2*1=2
            calls factorial(1):
            return 1 * factorial(0); =1*1=1
            calls factorial(O):
            return 1;
```

- Every call except the last makes a recursive call
- Each call makes the argument smaller

Recursive functions over lists

- You can write recursive functions over lists using the length of the list instead of n
- base case: length=0 ==> empty list
- recursive case: assume f works for list of length $\mathrm{n}-1$, what is the answer for a list with one more element?
- We will do examples with:
- arrays
- strings

Recursive function example
 sum of the list

- Recursive function to compute sum of a list of numbers
- What is the base case?

```
- length=0 (empty list) => sum = 0
```

- If we assume we can sum the first $\mathrm{n}-1$ items in the list, how can we get the sum of the whole list from that?
- sum (list) $=$ sum $($ list[0..n-2]) $+\operatorname{list[n-1]~}$

Assume I am given the answer to this

Recursive function example

count character occurrences in a string

- Recursive function to count the number of times a specific character appears in a string
- We will use the string member function substr to make a smaller string
- str.substr (int pos, int length);
- pos is the starting position in str
- length is the number of characters in the result

```
string x = "hello there";
cout << x.substr(3,5);lo th
```

- char access: $\mathrm{x}[1]$ is the second element ('e')

Recursive function example

sum of a list (array)

int sum(int a[], int size) \{ //size is number of elems if (size==0)
return 0;
else
return sum(a,size-1) $+\mathrm{a}[$ size-1];
\}
call sum on first n -1 elements The last element
For a list with size $=4: \operatorname{sum}(a, 4)$

$$
\operatorname{sum}(a, 3)+a[3]=
$$

$\operatorname{sum}(a, 2)+a[2]+a[3]=$
$\operatorname{sum}(a, 1)+a[1]+a[2]+a[3]=$
$\operatorname{sum}(a, 0)+a[0]+a[1]+a[2]+a[3]=$
$0+a[0]+a[1]+a[2]+a[3]$

Recursive function example

count character occurrences in a string

```
int numChars(char target, string str) {
    if (str.empty()) {
        return 0;
    } else {
        int result = numChars(search, str.substr(1,str.size()));
        if (str[0]==target)
            return 1+result
        else
            return result;
    }
}
int main() {
    string a = "hello";
    cout << a << numChars('l',a) << endl;
}
```


Three required properties

of recursive functions

- A Base case

- a non-recursive branch of the function body.
- must return the correct result for the base case
- Smaller caller
- each recursive call must pass a smaller version of the current argument.
- Recursive case
- assuming the recursive call works correctly, the code must produce the correct answer for the current argument.

Recursive function example

greatest common divisor

- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers evenly (without a remainder)
- This is a variant of Euclid's algorithm:

```
gcd (x,y) = y if y divides x evenly, otherwise:
gcd(x,y) = gcd(y,remainder of x/y) (or gcd(y,x%y) in c++)
```

- It's a recursive definition
- If $x<y$, then $x \% y$ is $x(\operatorname{sog} \operatorname{gcd}(x, y)=\operatorname{gcd}(y, x))$
- This moves the larger number to the first position.

Recursive function example

greatest common divisor

- Output:

```
gcd called with 9 and 1
GCD(9,1): 1
gcd called with 1 and 9
gcd called with 9 and 1
GCD(1,9): 1
gcd called with 9 and 2
gcd called with 2 and 
GCD(9,2): 1
gcd called with }70\mathrm{ and }2
gcd called with }25\mathrm{ and 20
gcd called with }20\mathrm{ and 5
GCD(70,25): 5
gcd called with 25 and 70
gcd called with }70\mathrm{ and }2
gcd called with }25\mathrm{ and 20
gcd called with }20\mathrm{ and 5
GCD(25,70): 5```

