Recursion | What is recursion?

* Generally, when something
contains a reference to itself

* Math: defining a function in terms
of itself

« Computer science: when a
function calls itself:

Week 7
Gaddis:19.1-19.4

CS 5301
Fall 2013

void message() {
cout << “This is a recursive function.\n”;

Jill Seaman , nessase)s
int main() {
message();

1 } What happens when this is executed? 2

How can a function call itself? | Recursive message() modified

* Infinite Recursion: * How about this one?

Th%s %s a recurs%ve funct%on. void message(int n) {
Th}s }s a recurs;ve funct}on. if (n > 0) {

Th}s }S a recurs;ve funct%on. cout << “This is a recursive function.\n”;
Th}S is a recursive funct}on. message(n-1);
This is a recursive function. }

This is a recursive function. }

This is a recursive function. . .

This is a recursive function. int main() {

This is a recursive function. message(s);

This is a recursive function. }

This is a recursive function.

This is a recursive function.

This is a recursive function.

6 nested calls to message:

message(5):
outputs “This is a recursive function”
calls message(4):
outputs “This is a recursive function”
calls message(3):
outputs “This is a recursive function”
calls message(2):
outputs “This is a recursive function”
calls message(l):
outputs “This is a recursive function”
calls message(0):
does nothing, just returns

Tracing the calls

depth of recursion (#times it calls itself) = 5:

.

—

How to write recursive functions

Branching is required (If or switch)
Find a base case

one (or more) values for which the result of the
function is known (no repetition required to solve it)

no recursive call is allowed here
Develop the recursive case

For a given argument (say n), assume the function
works for a smaller value (n-1).

Use the result of calling the function on n-1 to form a
solution for n

7

It is true that recursion is never required to
solve a problem

Any problem that can be solved with recursion can
also be solved using iteration.

Recursion requires extra overhead: function call
+ return mechanism uses extra resources

Why use recursion?

However:
Some repetitive problems are more easily and
naturally solved with recursion

the recursive solution is often shorter, more elegant,
easier to read and debug.

.

Recursive function example

factorial

Mathematical definition of n! (factorial of n)

if n=0 then n 1
if n>0 then n 1

; X 2 X3 X ... Xn
What is the base case?
n=0 (resultis 1)

If we assume (n-1)! can be computed, how can
we get n! from that?

n'=n*(n-1)!

Recursive function example

factorial

int factorial(int n) {
if (n==0)
return 1;
else
return n * factorial(n-1);

int main() {
int number;
cout << “Enter a number “;
cin >> number;
cout << “The factorial of “ << number << * is “
<< factorial (number) << endl;

Recursive functions over ints

* Many recursive functions (over integers) look
like this:

type f(int n) {

if (n==0)

//do the base case
else

// ... £f(n-1) ...

Tracing the calls

» Calls to factorial:

factorial(4):
return 4 * factorial(3); =4*6=24
calls factorial(3):
return 3 * factorial(2); =3*2=6
calls factorial(2):
return 2 * factorial(l); =2*1=2
calls factorial(l):
return 1 * factorial(0); =1*1=1

calls faCto?iiiigli/”””/)
return 1;
 Every call except the last makes a recursive call
« Each call makes the argument smaller

Recursive functions over lists

* You can write recursive functions over lists using
the length of the list instead of n

- base case: length=0 ==> empty list

- recursive case: assume f works for list of length n-1,
what is the answer for a list with one more element?

* We will do examples with:
- arrays
- strings

| Recursive function example

sum of the list
* Recursive function to compute sum of a list of
numbers
* What is the base case?
- length=0 (empty list) =>sum =0

* If we assume we can sum the first n-1 items in
the list, how can we get the sum of the whole list
from that?

- sum (list) = sum (list[0..n-2]) + list[n-1]

Assume | am given the answer to this

\

| Recursive function example

count character occurrences in a string
* Recursive function to count the number of times
a specific character appears in a string

* We will use the string member function substr to
make a smaller string

- str.substr (int pos, int length);
- pos is the starting position in str
- length is the number of characters in the result

string x = “hello there”;
cout << x.substr(3,5);

« char access: x[1] is the second element (‘e!

\

| Recursive function example

sum of a list (array)

int sum(int a[], int size) { //size is number of elems
if (size==0)
return 0;
else
return sum(a,size-1) + a[size-1];

call sum on first n-1 elements The last element

For a list with size = 4: sum(a,4)

sum(a,3) + a[3] =

sum(a,2) + a[2] + a[3] =

sum(a,l) + a[l] + a[2] + a[3] =
sum(a,0) + a[0] + a[l] + a[2] + a[3] =
0 + a[0] + a[l] + a[2] + a[3]

\

| Recursive function example

count character occurrences in a string

int numChars(char target, string str) {
if (str.empty()) {
return 0;
} else {
int result = numChars(search, str.substr(l,str.size()));
if (str[0]==target)
return l+result;
else
return result;

}

int main() {
string a = "hello";
cout << a << numChars('l',a) << endl;

}

| Three required properties

\

of recursive functions

A Base case
a non-recursive branch of the function body.
must return the correct result for the base case
Smaller caller

each recursive call must pass a smaller version of
the current argument.

Recursive case

assuming the recursive call works correctly, the
code must produce the correct answer for the
current argument.

17

| Recursive function example

greatest common divisor

Greatest common divisor of two non-zero ints is
the largest positive integer that divides the
numbers evenly (without a remainder)

This is a variant of Euclid’s algorithm:

y if y divides x evenly, otherwise:
gcd(y,remainder of x/y) (or gcd(y,x%y) in c++)

gcd(x,Y)
gcd(x,Y)

It's a recursive definition
If x <y, then x%y is x (so gcd(x,y) = gcd(y,x))
This moves the larger number to the first pczsition.

| Recursive function example

greatest common divisor
Code:

int ged(int x, int y) {
cout << "gcd called with " << x << " and " << y << endl;
if (x 8y == 0) {
return y;
} else {
return gcd(y, X % y);
}

int main() {

cout << "GCD(9,1): " << gecd(9,1) << endl;
cout << "GCD(1l,9): " << gcd(1l,9) << endl;
cout << "GCD(9,2): " << gcd(9,2) << endl;
cout << "GCD(70,25): " << gcd(70,25) << endl;
cout << "GCD(25,70): " << gcd(25,70) << endl;

Recursive function example

greatest common divisor
Output:

gcd called with 9 and 1
GCD(9,1): 1

gcd called with 1 and 9
gcd called with 9 and 1
GCD(1,9): 1

gcd called with 9 and 2
gcd called with 2 and 1
GCD(9,2): 1

gcd called with 70 and 25
gcd called with 25 and 20
gcd called with 20 and 5
GCD(70,25): 5

gcd called with 25 and 70
gcd called with 70 and 25
gcd called with 25 and 20
gcd called with 20 and 5

GCD(25,70): 5 20

