
Programming Assignment #4 !
Password Manager !
CS 2308.256, Spring 2014
Instructor: Jill Seaman !
Due: before class Wednesday, 3/19/2014 (upload electronic copy by 1:30pm) !
Problem: !
Write a C++ program that will manage passwords. !
Your program will contain:

• A Class, PasswordManager, that will manage a single password.
• A main function, that will allow the user to test the PasswordManager class. !

Your program should consist of the following files:
PasswordManager.h
PasswordManager.cpp
PasswordDriver.cpp (containing the main function) !

You should also have a makefile that can be used to build the executable program. !
PasswordManager Class: !
The PasswordManager class should have just one member variable, which will store the
encrypted password (a string). Do not store the password unencrypted! !
The PasswordManager class should have the following two internal member functions
(not accessible outside of the class): !
encrypt: this takes a password (a string) and returns the encrypted form of the
password. Note: there is no decrypt function (there is no need to decrypt passwords).
We will use the following VERY simple encryption algorithm:

 
The XOR operator (^) in C++ takes two char arguments and returns a char.  
For every character in the input string, apply the XOR operator ^ with the
character ‘2’. For example: str[i] ^ ‘2’;!!

Store all the resulting chars in a string to be returned as the result of the function (do
not set the member variable, do not change the argument that is passed in). !!

!1

verifyPassword: this takes a string (a password) and returns true if it meets the
following criteria:

• it is at least 8 characters long
• it contains at least one letter
• it contains at least one digit
• it contains at least one of these four characters: <, >, ?, !

Otherwise it returns false. !
The PasswordManager should have the following member functions that are accessible
outside of the class: !
setEncryptedPassword: (a setter function) takes a string (an encrypted password)
and stores it in the member variable. !
getEncryptedPassword: (a getter function) returns the value of the encrypted
password stored in the member variable. !
setNewPassword: takes a string (a proposed password). If it meets the criteria in
verifyPassword, it encrypts the password and stores it in the member variable and
returns true. Otherwise returns false. !
validatePassword: takes a string (a password) and returns true if, once encrypted, it
matches the encrypted string stored in the the member variable. Else returns false. !!
Input/Output: !
The main function should create and use one instance of the PasswordManager class.
It is called “the password manager” below. !
Your main function will use a file “password.txt” to store the encrypted password in
between executions of the program. However, the file may not yet exist the first time
the program is executed. So when your main function starts, it should first try to input
an encrypted password from the file “password.txt”. If the file exists and contains a
string, the program should set the encrypted password in the password manager.
Otherwise it should set the password in the password manager to “abc123!!!”. !
Your program will use the following menu to prompt the user to test the
implementation: !

Password Utilities:!
A. Change Password!
B. Validate Password!
C. Quit!
Enter your choice: !!

!2

The menu should be processed in a loop, so the user may continue testing the
password operations. !
The Change Password option should ask the user to enter a new password, and explain
the criteria for a valid password. The main function should call the password manager
to verify and change the password. It should output a message indicating whether or
not the password was changed. If it was not changed, it should NOT repeat and ask
the user to try again. !
The Validate Password option should ask the user to input the password. Then the
main function should call the password manager to validate the password, and then the
main function should output whether or not the password was valid (matching the one
stored by the password manager) or not. If it was not valid, it should NOT repeat and
ask the user to try again. !
When the user selects C to quit, the program should save the encrypted password in
the file “password.txt” (overwriting anything that was previously in the file). !!
NOTES: !
• This program DOES need to be done in a Linux/Unix environment.  !
• Do NOT change the names of the functions! Use the exact same function names,

and do not change the case (uppercase/lowercase). !
• Create and use a makefile to compile the executable program. Modify the one

from the lecture. I recommend calling the executable file “password”. !
• Put the Class declaration in the header file, the implementation of the class member

functions in PasswordManager.cpp and the main function in PasswordDriver.cpp. Put
a header comment at the top of each file. !

• DO NOT change the menu choice letters. 

• ALL of the input and output must be done by the driver. The password manager
class should not do ANY input/output, not to the screen OR the file! !!

Logistics: !
Since there are multiple files for this assignment, you need to combine them into one
file before submitting them. You should use the zip utility from the Linux/Unix
command line: !

!3

[...]$zip assign4_xxxxx.zip PasswordDriver.cpp
PasswordManager.cpp PasswordManager.h makefile!!
This combines the 4 files into one zip file, assign4_xxxxx.zip (where xxxxx is your
NetID). Then you should submit only assign4_xxxxx.zip. !
 
There are two steps to the turn-in process: !

1. Submit an electronic copy using the Assignments tool in TRACS no later than one
half hour before class the day the assignment is due (see top of page 1). No late
assignments will be accepted! !

2. Submit a printout of the file at the beginning of class, the day the assignment is
due. Make sure your name is on it.  
 
If you are unable to turn a printout in during class, you have until 5pm on the
day the assignment is due to turn it in to the computer science department office
(Nueces 247). They will stamp it and put it in my mailbox. DO NOT slide it
under my office door.

!4

