Ch 8. Searching and Sorting Arrays
8.1 and 8.3 only

CS 2308
Spring 2014
Jill Seaman

Definitions of Search and Sort

- Search: find a given item in an array, return the index of the item, or -1 if not found.
- Sort: rearrange the items in an array into some order (smallest to biggest, alphabetical order, etc.).
- There are various methods (algorithms) for carrying out these common tasks.
- Which ones are better? Why?

Linear Search in C++

first attempt

```
int searchList (int list[], int size, int target) {
    int position = -1; //position of target
    for (int i=0; i<size; i++)
    { if (list[i] == target) /
        position = i; //record which item
    }
    return position
}
```

Is this algorithm correct?

Is this algorithm efficient (does it do unnecessary work)?
//position of target
if (list[i] == target) //found the target! position $=1$; /record which item
return position;
\}

- Very simple method.
- Compare first element to target value, if not found then compare second element to target value . . .
- Repeat until:
target value is found (return its index) or we run out of items (return -1).

Linear Search in C++
 second attempt

```
int searchList (int list[], int size, int value)
    int index=0; = //index to process the array
    int position = -1; //position of target
    bool found = false; //flag, true when target is found
    while (index < size && !found)
    {
        if (list[index] == value)
        found = true;
        position = index; //record which item
        }
        index++; //increment loop index
    }
    return position;
}
    Is this algorithm correct?
    Is this algorithm efficient (or does it do unnecessary work)?

\section*{Evaluating the Algorithm}
- Does it do any unnecessary work?
- Is it efficient? How would we know?
- We measure efficiency of algorithms in terms of number of main steps required to finish.
- For search algorithms, the main step is comparing an array element to the target value.
- Number of steps depends on:
size of input array
whether or not value is in array
where the value is in the array

\section*{Program that uses linear search}

\section*{\#include <iostream> \\ using namespace std;}
int searchList(int[], int, int);
int main() \{
const int SIZE=5;
int idNums[SIZE] \(=\{871,750,988,100,822\} ;\)
int results, id;
cout << "Enter the employee ID to search for: "; cin \(\gg\) id;
results \(=\) searchList(idNums, SIZE, id);
if (results == -1) \{
cout << "That id number is not registered\n";
\} else
cout << "That id number is found at location "; cout << results+1 << endl;

\section*{Efficiency of Linear Search}
how many steps?
\(N\) is the number of elements in the array
\begin{tabular}{|l|c|c|}
\hline & \(\mathrm{N}=50,000\) & In terms of N \\
\hline \begin{tabular}{l} 
Best \\
Case:
\end{tabular} & 1 & 1 \\
\hline \begin{tabular}{l} 
Average \\
Case:
\end{tabular} & 25,000 & \(\mathrm{~N} / 2\) \\
\hline \begin{tabular}{l} 
Worst \\
Case:
\end{tabular} & 50,000 & N \\
\hline
\end{tabular}

Note: if we search for many items that are not in the array, the average case will be greater than \(\mathrm{N} / 2 .{ }^{8}\)

\section*{Binary Search}
- Works only for SORTED arrays
- Divide and conquer style algorithm
- Compare target value to middle element in list.
if equal, then return its index
if less than middle element, repeat the search in the first half of list
if greater than middle element, repeat the search in last half of list
- If current search list is narrowed down to 0 elements, return -1

\section*{Binary Search Algorithm \\ example}

\section*{Binary Search Algorithm}
- The algorithm described in pseudocode:
while (number of items in list >=1)
if (item at middle position is equal to target) target is found! End of algorithm
else
if (target < middle item) (narrow search list) list = lower half of list else
list \(=\) upper half of list
end while
if we reach this point: target not found

\section*{Binary Search in C++}
int binarySearch (int array[], int size, int target) \{
```

int first = 0, //index of (current) first elem
last = size - 1, //index of (current) last elem
//index of (current) mid
position = -1; //index of target value
bool found = false; //flag
while (first <= last \&\& !found) {
middle = (first + last) /2; //calculate midpoint
if (array[middle] == target) { What if first + last is odd?
found = true;
What if first==last?
position = middle
else if (target < array[middle]) {
last = middle - 1; //search lower half
} else { {
//search upper half
first = middle + 1;
}
}
return position;
\}

Binary Search
 Sample Exam Question!

The target of your search is 42 . Given the following array of integers, record the values stored in the variables named first, last, and middle during each iteration of a binary search.
values:

$\mathbf{1}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{2 0}$	$\mathbf{4 2}$	$\mathbf{5 5}$	$\mathbf{6 7}$	$\mathbf{7 8}$	$\mathbf{1 0 1}$	$\mathbf{1 1 2}$	$\mathbf{1 2 2}$	$\mathbf{1 7 0}$	$\mathbf{1 7 9}$	$\mathbf{1 9 0}$
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

first	0	0	4
last	14	6	6
middle	7	3	5

Repeat the exercise with a target of 82 :

Note: these are the indexes, not the values in the array

Program using Binary Search

\#include <iostream>
using namespace std;
int binarySearch(int[], int, int);
How is this program different from the one on slide 6?
int main() \{
const int SIZE=5;
int idNums[SIZE] $=\{100,750,822,871,988\} ;$
int results, id;
cout << "Enter the employee ID to search for: "; cin >> id;
results = binarySearch(idNums, SIZE, id);
if (results == -1)
cout << "That id number is not registered\n";
\} else \{
cout \ll "That id number is found at location " cout << results+1 << endl;
\}

Efficiency of Binary Search

Calculate worst case for $\mathrm{N}=1024$

Items left to search	Comparisons so far	
1024	0	
512	1	
256	2	
128	3	
64	4	
32	5	
16	6	
8	7	
4	8	
2	9	Goal: calculate
1	10	this value from N
$1024=2^{10}<=$	$\log _{2} 1024=10$	

Efficiency of Binary Search

If N is the number of elements in the array, how many comparisons (steps)?

$1024=2^{10}$	<==> $\log _{2} 1024=10$	
$N=2^{\text {steps }}$	$<==>\log _{2} N=$ steps	To what power do I raise 2 to get N?

	$\mathrm{N}=50,000$	In terms of N		
Best Case:	1	1		
Worst Case:	16	log		Rounded up to
:---				
next whole				
number				
16				

Is $\log _{2} \mathrm{~N}$ better than N ?

Is binary search better than linear search?
Compare values of $\mathrm{N} / 2, \mathrm{~N}$, and $\log _{2} \mathrm{~N}$ as N increases:

N	N/2	Log
5	2.5	2.3
50	25	5.6
500	250	9
5,000	2,500	12.3
50,000	25,000	15.6

N and $\mathrm{N} / 2$ are growing much faster than $\log \mathrm{N}$! slower growing is more efficient (fewer steps).

Comparing growth of functions

Time (\# of steps)

Data size (N)

Classifications of (math) functions

Constant	$f(x)=b$	$O(1)$
Logarithmic	$f(x)=\log$	$O(\log n)$
Linear	$f(x)=a x+b$	$O(n)$
Linearithmic	$f(x)=x \log$	$O(n \log n)$
Quadratic	$f(x)=a x$	$O(n$
Exponential	$f(x)=b$	$O(2$

- Last column is "big Oh notation", used in CS.
- It ignores all but dominant term, constant factors

Efficiency of Algorithms

- To classify the efficiency of an algorithm:

Express "time" (using number of main steps or comparisons), as a function of input size
Determine which classification the function fits into.

- Nearer to the top of the classification chart (on slide 18) is slower growth, and more efficient (constant is better than logarithmic, etc.)

8.3 Sorting Algorithms

- Sort: rearrange the items in an array into ascending or descending order.
- Selection Sort
- Bubble Sort

551127814201794267190710111221708
unsorted

Why is sorting important?

- Searching in a sorted list is much easier than searching in an unsorted list.
- Especially for people:
- dictionary entries (in a dictionary book)
phone book (remember these?)
- card catalog in library (it used to be drawers of index cards)
bank statement: transactions in date order
- Most of the data displayed by computers ${ }_{2}$ is sorted.
- There is a pass for each position (0..size-1)
- On each pass, the smallest (minimum) element in the rest of the list is exchanged (swapped) with element at the current position.
- The first part of the list (the part that is already processed) is always sorted
- Each pass increases the size of the sorted portion.

Selection Sort

Selection Sort：End Pass One

Selection Sort：End Pass Two

סmヶ刀○のマと

Selection Sort：Pass Two

Selection Sort：Pass Three

Selection Sort: End Pass Three

10

Selection Sort: Pass Four

11

Selection Sort: End Pass Four

Selection Sort in C++

```
// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
    int minIndex = start;
    for (int i = start+1; i < size; i++) { Note: saving the index
        if (array[i] < array[minIndex]) {
            minIndex = i;
        }
    }
        return minIndex;
}
// Sorts an array, using findIndexOfMin
void selectionSort (int array[], int size) {
    int temp;
    int minIndex;
    for (int index = 0; index < (size -1); index++) {
        inIndex = findIndexOfMin(array, size, index);
        //swap
            temp = array[minIndex];
            array[minIndex] = array[index];
            array[index] = temp;
    }

\section*{Program using Selection Sort}
```

\#include <iostream>
using namespace std;
int findIndexOfMin (int [], int, int);
void selectionSort(int [], int);
void showArray(int [], int);
int main()
int values[6] = {7, 2, 3, 8, 9, 1};
cout << "The unsorted values are: \n";
showArray (values, 6);
selectionSort (values, 6);
cout << "The sorted values are: \n";
showArray(values, 6);
}
void showArray (int array[], int size) {
for (int i=0; i<size; i++)
cout << array[i] << "، " ;
cout << endl;

```
Output:
The unsorted values are:
    723891
The sorted values are.
    123789

\section*{Efficiency of Selection Sort}
- \(N\) is the number of elements in the list
- Outer loop (in selectionSort) executes N-1 times
- Inner loop (in minIndex) executes \(\mathrm{N}-1\), then \(\mathrm{N}-2\), then \(\mathrm{N}-3\), ... then once.
- Total number of comparisons (in inner loop):
\((\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\) sum of 1 to \(\mathrm{N}-1\)
Note: \(\mathrm{N}+(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}(\mathrm{N}+1) / 2\)
Subtract \(N\) from each side:
\[
(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}(\mathrm{~N}+1) / 2-\mathrm{N}
\]
\(\begin{array}{ll}=\left(\mathrm{N}^{2}+\mathrm{N}\right) / 2-2 \mathrm{~N} / 2 & \\ =\left(\mathrm{N}^{2}+\mathrm{N}-2 \mathrm{~N}\right) / 2 & \mathbf{O}\left(\mathbf{N}^{2}\right)\end{array}\)
\(=N^{2} / 2-N / 2\)

\section*{Bubble sort \\ Example: first pass}
- \(723891 \quad 7>2\), swap
-273891 \(7>3\), swap
-237891 !(7 > 8), no swap
-237891 !(8 > 9), no swap
- \(237891 \quad 9>1\), swap
- \(23781 \underline{9} \quad\) finished pass 1, did 3 swaps

Note: largest element is now in last position
Note: This is one complete pass!

\section*{Bubble sort}

Example: second and third pass
- \(237819 \quad 2<3<7<8\), no swap, ! ( \(8<1\) ), swap
- 23718 89 (8<9) no swap
- finished pass 2, did one swap

2 largest elements in last 2 positions
-237189 \(2<3<7\), no swap, ! ( \(7<1\) ), swap
- \(231789 \quad 7<8<9\), no swap
- finished pass 3 , did one swap

3 largest elements in last 3 positions

\section*{Bubble sort}

Example: passes 4, 5, and 6
- \(231789 \quad 2<3\), !( \(3<1\) ) swap, \(3<7<8<9\)
- \(21 \underline{3789}\)
- finished pass 4, did one swap
- 213789 !( \(2<1\) ) swap, \(2<3<7<8<9\)
- 123789
- finished pass 5 , did one swap
- \(123789 \quad 1<2<3<7<8<9\), no swaps
- finished pass 6, no swaps, list is sorted! \({ }_{38}\)
- At the end of the first pass, the largest element is moved to the end (it's bigger than all its neighbors)
- At the end of the second pass, the second largest element is moved to just before the last element.
- The back end (tail) of the list remains sorted.
- Each pass increases the size of the sorted portion.
- No exchanges implies each element is smaller than its next neighbor (so the list is sorted).

\section*{Bubble Sort in C++}
```

void bubbleSort (int array[], int size) {
bool swap;
int temp;
do {
swap = false;
for (int i = 0; i < (size-1); i++) {
if (array [i] > array[i+1]) {
temp = array[i];
array[i] = array[i+1];
array[i+1] = temp;
swap = true;
}
}
} while (swap);

```
\}

\section*{Program using bubble sort}
```

\#include <iostream>
using namespace std;
void bubbleSort(int [], int);
void showArray(int [], int);
int main() {
int values[6] = {7, 2, 3, 8, 9, 1};
cout << "The unsorted values are: \n";
showArray (values, 6);
bubbleSort (values, 6);
cout << "The sorted values are: \n";
showArray(values, 6);
}
void showArray (int array[], int size) {
for (int i=0; i<size; i++)
cout << array[i] << "،"،
cout << endl;
}

```

\section*{Output:}

\section*{Efficiency of Bubble Sort}
- Each pass makes N-1 comparisons
- There will be at most N passes
- So worst case it's: \(\quad(\mathrm{N}-1)^{*} \mathrm{~N}=\mathrm{N}^{2}-\mathrm{N} \quad \mathrm{O}\left(\mathbf{N}^{2}\right)\)
- If you change the algorithm to look at only the unsorted part of the array in each pass, it's exactly like the selection sort:
\((\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}^{2} / 2-\mathrm{N} / 2\)
still \(\mathbf{O}\left(\mathbf{N}^{2}\right)\)```

