
1

Final Exam Exercises

CS 2308
Spring 2014

!
Jill Seaman

!

2

Chapters 1-7 + 11
Write C++ code to:
! Determine if a number is odd or even
! Determine if a number/character is in a range
- 1 to 10 (inclusive)
- between ‘a’ and ‘z’ (inclusive)

! Assign a category based on ranges (wind speed)
- Tropical Depression: <38mph
- Tropical Storm: 39-73mph
- Hurricane: >=74mph

3

Chapters 1-7 + 11
Write C++ code to:
! Pass arguments by value and reference
- Return multiple values from a function: 

 compute the area AND perimeter of a rectangle
! Process an Array:
- find maximum/minimum value
- sum/average/count values passing a test (>100)

! Define a structure for weight: lbs and ozs (1lb=16 ozs)
! Determine if one weight is�
- equal to another
- greater than (or less than) another 4

Finding Errors
! Input validation for password, 2 errors:
!

!

!

!

!

! Calculate average with decimals, 2 errors:

PasswordManager pwm;!
string pw;!
bool testa; !
do{!
 cout << "Please enter a new password." << endl;!
 cin>> pw;!
 bool testa = pwm.setNewPassword (pw);!
} while(testa = false);

double average (int a, int b, int c) {!
 double result = a + b + c / 3;!
 return result;!
}

5

Finding Errors
!

! Sum all values between 0 and 100, 3 errors:
int sum (int a[], int size) {!
 int total;!
 for (int i=1; i<size; i++) {!
 if (a[i] >=0 || a[i] <=100)!
 total = total + a[i];!
 }!
 return total;!
}!

6

Strings
Write C++ function to:
! determine if a string meets the following criteria:
- it contains only letters, numbers, and the

underscore (but none of these is required)
- the first character is not a digit.
!

- You may assume it has at least one character.

7

Binary Search
Example

5

The target of your search is 39. Given the following list of integers, record the
values of first, last, and middle during a binary search. Assume the following
numbers are in an array.!
!
!
!
 ! ! !

Repeat the exercise with a target of 179.

first 0 0 4 4 5!
last 14 6 6 4 4!
middle 7 3 5 4 x

These are indexes!!

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Solution for 39 (which is not in the list):

8

Example Sorting Problem
Given the following list of integers, show what order the integers
would be in after executing:!
a) one complete pass of the bubble sort!
b) two passes of the selection sort.  

Assume the following numbers are in an array (subscripts along the
bottom).!
! !
!
!
 ! ! !

112 73 8 140 22 42 88 67

0 1 2 3 4 5 6 7

9

Algorithm Efficiency
Big O Notation

• In order of increasing growth (less efficiency)
- O(1) constant
- O(log n) logarithmic
- O(n) linear
- O(n log n) linearithmic
- O(n2) quadratic

• when using big O notation to describe the
efficiency of an algorithm:
- what is n?
- what does the function inside the () describe? 10

Algorithm Efficiency
Give the efficiency of each using big-O notation

! Linear search
! Binary search on an already sorted list
! Bubble sort
! Selection sort
! Access one element in an array
! Array processing:

- sum, average, show list, find max/min
- delete all elements

11

Algorithm Efficiency
Give the efficiency of each using big-O notation

! Linked list operations:
- insert at head
- append
- delete (removeProduct from PA6)
- destructor (“delete” all nodes)
- access one element (by index)
- sum, average, show list, find max/min (traversal)
- selection sort, as we did in PA 6

if you have to traverse the list, it’s O(n).
if you have to traverse the list once for
each element, it’s O(n2)

12

Pointers
! Tracing code with pointers, what is output?

int *ptr1, *ptr2; !
int foo1, foo2 = 13;!
 !
ptr1 = &foo1;!
ptr2 = &foo2;!
foo1 = 42;!
cout << "*ptr1 - " << *ptr1 << endl;!
cout << "*ptr2 - " << *ptr2 << endl;!
 !
ptr1 = ptr2;!
cout << "foo1 - " << foo1 << endl;!
cout << "foo2 - " << foo2 << endl;!
!
ptr2 = &foo1;!
*ptr1 = *ptr2;!
cout << "foo1 - " << foo1 << endl;!
cout << "foo2 - " << foo2 << endl;

13

Pointers
! Rewrite using pointer notation instead of []:
!

! Write a function to swap the values of its
parameters, using pointers instead of pass by
reference.

! Write a function to double the size of an array, by
dynamically allocating a new array that is twice as
big, and copying the elements from the original.
- who is responsible for deallocating this dynamically

allocated array? What statement is used to
deallocate it?

for (int x = 0; x < 100; x++)!
 cout << array[x] << endl;

14

Pointers to structs/obj:
! Given the following definitions:
!

!

! Write the C++ code for the following:
- to store the address of a in s.
- to store 10 in the m field of a (don’t use a, use s).
- to store the address of z in the x field of a.
- to store 11 in z using only a and x in the statement.
- to store 12 in z using only s and x in the statement.

struct A {int m, int *x};!
A a, *s;!
int z;

15

Linux Commands
! What linux command would you use to:

A. List (display) the files in the current directory?
B. Display the name of the current directory?
C. Make a new directory called Assignments?
D. Make Assignments the current directory?
E. Edit a file called myFile.txt?
F. Compile a file called myProg.cpp?
G. View the contents of myProg.cpp on the screen?
H. Delete the file myProg.cpp?
I. Execute a makefile?
J. Compile a file called a.cpp to an object file?

16

Classes
! What is the error? (hint: it’s a syntax error)

class Time {!
 private:!
 int hour;!
 int minute;!
 public:!
 void addMinute();!
 void addHour();!
};!
!
void addMinute() {!
 if (minute==59) {!
 minute=0;!
 addHour();!
 } else!
 minute++;!
} !

17

Classes
! Given the following Time class:
!

!

!

!

!

! Circle the copy constructor prototype
! If t1 is an existing Time object, use the copy

constructor to initialize a new Time object t from
t1:

class Time {!
 private:!
 int hour;!
 int minute;!
 public:!
 Time();!
 Time(int, int);!
 Time(Time &);!
};

18

Classes
! Given a 24 hour time class, implement display:

class Time24 {!
 private:!
 int hour, minute;!
 public:!
 Time24(int,int);!
 void display();!
};!
Time24::Time24(int h, int m) { hour = h; minute = m; }!
void Time24::display() {!
 !
!
!
!
!
} !
!
int main () { Time24 t(14,23); t.display(); }

Assume the hour will be between 0 and 23
and the minute will be between 0 and 59.

Implement this function to output the time in a
12 hour format with am or pm (but with no 0 padding).
The output for the example below should be: 2:23pm

19

Linked Lists
! Write a function that takes an array of ints and

converts it to a linked list by inserting each
element to the front of the list (the order will be
reversed). Return a pointer to the first node.

struct Node {!
 int data;!
 Node *next;!
};!
!
Node *convertReverse (int list[], int size) {!
!
!
!
} !

Spoiler alert! Solution on next slide.

20

Linked Lists
! Write a function that takes an array of ints and

converts it to a linked list by inserting each
element to the front of the list (the order will be
reversed).

struct Node {!
 int data;!
 Node *next;!
};!
!
Node *convertReverse (int list[], int size) {!
 Node *head = NULL;!
 for (int i=0; i<size; i++) {!
 Node *newNode = new Node;!
 newNode->data = list[i];!
 newNode->next = head;!
 head = newNode;!
 }!
 return head;!
} !

21

Stacks and Queues

Describe in English how to use a stack to: 

! determine if the brackets are matched in a string
(or a file).
!

! evaluate expressions written in post-fix notation.

22

Stacks and Queues
exercises

Suppose the following operations are performed
on an empty stack. Insert numbers in the diagram
to show what will be stored in the stack after the
operations have executed (label the top):

int x;  
push(3);  
push(5);  
push(9);  
x = pop();  
push(2);  
x = pop();  
push(0);

23

Stacks and Queues
exercises

Suppose the following operations are performed
on an empty queue. Insert numbers in the diagram
to show what will be stored in the queue after the
operations have executed (label the front+rear):

int x;  
enqueue(3);  
enqueue(5);  
enqueue(9);  
x = dequeue();  
enqueue(2);  
x = dequeue();  
enqueue(0);

Specify which location is the front,
and which location is the rear.
Don’t just put the labels at the top
or bottom of the drawing.

24

Disclaimer
! The exercises in this lecture do not cover ALL of

the material that will be on the final exam.
! These exercises do provide some sample exam

questions.
! There will be questions that will require writing

programs or functions or class declarations and
implementations.

! There will be questions (short answer, multiple
choice) that will test your understanding of the
concepts we have covered (vocabulary, etc).

