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1. The problem with traditional 
development processes

• Lengthy development times (one to five years) 
- Product may be out of date before it is completed 

• Lack of flexibility regarding requirements: 
- Unable to cope with changing requirements 
- Requirements must be completely understood upfront 

• Too much reliance on heroic developer effort 
- lots of overtime to finish on time 

• Too much overhead 
- complex methodology requires detailed specifications of 

activities, detailed design documents, etc. 
- Much information is maintained in multiple forms

!3

The need for rapid software 
development

• Changing business environments 
- New opportunities and technologies 
- Changing markets, new competitors 

• Companies will trade off quality for faster deployment 

• Requirements are never stable and hard to predict 

• Traditional methods are inadequate in this context 

• 1990’s: Agile processes were developed in response to 
these problems.
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2. What are agile processes?

• Form of incremental development:  
- Very small increments (2-3 weeks) 
- Customers evaluate versions 

• Minimal process documentation 
- Minimal user requirements documents 
- Lack of detailed design specifications 

• Focus on human and team aspects of software 
development. 

• Favor use of development tools: 
- IDEs, UI development tools, etc.
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Agile manifesto 

• We have come to value: 
- Individuals and interactions over processes and tools 
- Working software over comprehensive documentation  
- Customer collaboration over contract negotiation  
- Responding to change over following a plan  

• That is, while there is value in the items on  
the right, we value the items on the left more.  

• Website:
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www.agilealliance.org

Some principles of agile processes

• Incremental Delivery 
- small increments, rapid delivery 
- working software is primary measure of success  

• Customer Involvement, constant feedback 

• People not process 
- focus on informal communication 

• Embrace Change 
- expect change, design the process to accommodate it 
- incremental design: delay design decisions as much as possible 

• Maintain Simplicity 
- minimal documentation, source code is the documentation 
- in software and process, eliminate complexity
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Some agile methods

• Extreme Programming (XP) 

• Scrum 

• Crystal methods 

• Evo 

• Adaptive Software Development 

• Dynamic Solutions Delivery Model (DSDM) 

• Feature Driven Development 

• Agile modeling methods 

• Agile instantiations of RUP 
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3. Extreme programming (XP)

• Best-known and most widely used agile method. 

• Kent Beck, 2000 

!

• Pushing recognized good practice to the extreme: 
- More customer involvement is good so bring customers onsite. 
- Code reviews are good, so do constant code reviews via pair 

programming 
- Testing is good, so write tests before writing the code. 
- Short iterations and early feedback are good, so make 

iterations only 1 or 2 weeks.
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XP: 12 core practices

1. Planning Game(s) * 
- Major Release: Define scope, customer writes story cards 
- Each iteration: customer picks cards, developers pick tasks 

2. Small, frequent releases  
- 1-3 weeks 

3. System metaphors 
- used to describe architecture in easily understood terms 

4. Simple Design * 
- No speculative design, keep it easy to understand
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XP: 12 core practices

5. Testing * 
- Automated, test-driven (test-first) development 

6. Frequent Refactoring * 
- Cleaning code without changing functionality 
- Keep the structure from degrading 

7. Pair Programming * 
- One computer, one typist, other reviews, then swap 
- Rotate (change) partners  

8. Team Code ownership 
- Any programmer can improve any code,  
- Entire team is responsible for all the code. 
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XP: 12 core practices

9. Continuous Integration 
- all checked in code is continually tested on a build machine  

10.Sustainable Pace:  
- No overtime, developers not overworked 

11.Whole Team Together 
- Developers and customer in one room, accessible 

12.Coding Standards 
- Adopt a common programming style
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Requirements (The planning game)

• Story Cards  
- Customer writes brief feature request. 

• Task List 
- Implementation tasks 
- Written by Developer(s) 
- After discussing story card with Customer  

• Customer chooses the story cards to implement next 

• Cards can be changed or discarded 

• Requirements specification depends on oral 
communication.
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Requirements: example story cards

• From a flight-booking website 

!

!

• Or if the scope of that is too large for an iteration, 
break it down into several stories:
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!
User needs to Find Lowest Fares 

!
User needs to find lowest fares  
for a one-way trip 

!
User needs to find lowest fares  
for a round-trip 

!
User needs to find lowest fares  
offered by a given airline 

Task List example

• From the story card: 

!

!

• List of Implementation Tasks 
- Implement/modify fare schedule database 
- Implement search for a flights/legs by date 
- Implement search for multi-leg flight 
- Add/modify GUI for user to access search 
- Implement save itinerary for user 
- etc.
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!
User needs to find lowest fares  
for a round-trip 

XP and anticipating change

• Conventional wisdom:  
Design for change by using very general designs.  
- Claim: this reduces costs later in the life cycle. 

!

• XP maintains: this is not worthwhile  
- Changes cannot be reliably anticipated. 
!

• XP proposes: Constant code improvement 
(refactoring) 
- make changes easier when they have to be implemented 
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Refactoring

• Restructuring an existing body of code, altering its 
internal structure without changing its external 
behavior  

• Advantages: 
- Easier to understand, easier to add new functionality 

• Examples  
- Breaking up a large class into two or more classes. 
- Moving methods/functions to different classes. 
- Renaming attributes and methods to make them easier to 

understand. 
- Replacement of inline code with a call to a method/function.

!17

Testing in XP

• Test-first Development  
- Tests are written before the task is implemented. 
- Forces developer to clarify the interface and the behavior of the 

implementation. 
- Tests are based on user stories and tasks, one test per task. 

• Customer involvement. 
- Customer helps write tests, throughout development process.  
- (traditionally customer testing occurs at the end of the project.) 

• Test automation is crucial 
- Testing is developer’s responsibility (no external test team) 
- No interaction required: results checked automatically and reported. 
- Automatic regression testing ensures no existing functionality gets 

broken by a new increment or refactoring
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Test-driven development
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Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

Implement  
functionality or  

debug

test should fail the first time.

Test driven development example

• Task: implement a Money class in Java  
to support multiple currencies, adding money, etc. 

• Developer writes a Money test class:  
- Assumes: Money(int,string) constr, Money add(Money) method
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public class MoneyTest extends TestCase {!
!
  public void testSimpleAdd() {!
    Money m1 = new Money(12,”usd”);!
    Money m2 = new Money (14, “usd”);!
    Money expected = new Money(26, “usd”);!
    Money result = m1.add(m2);!
    assertEquals (expected, result);!
  }!
}



Pair programming

• Programmers work in pairs at one workstation. 
- One has control of the computer 
- Other is “looking over their shoulder” 
- take turns in each role 

• Pairs change partners for different tasks. 

• Advantages: 
- Helps develop common ownership of code. 
- Informal review process. 
- Encourages refactoring. 

• How productive is it? 
- Results vary, hard to measure full effect.
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4. Agile versions of UP

• Unified Process is a hybrid process, and can be 
instantiated in different ways 

• How to make a more agile instantiation of UP: 
- restrict the required work products (artifacts) 
- eliminate/merge some of the roles 
- add more customer involvement in the iterations 

!

• The following paper discusses this approach:
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Michael Hirsch. 2002. Making RUP agile. In OOPSLA 2002 Practitioners Reports 
(OOPSLA '02). ACM, New York, NY, USA, 1-ff. DOI=10.1145/604251.604254 
http://doi.acm.org/10.1145/604251.604254

5. Project management and Scrum

• What is Project Management? 
- job of ensuring software is delivered on time within the budget. 

• In traditional processes the project manager 
decides:  
- what should be delivered,  
- when it should be delivered and  
- who will work on the development of the project deliverables 

• This approach does not work for Agile projects. 
- “what should be delivered” is not known up front 
- change is the norm 
- But agile projects still need to make good use of resources
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Scrum

• A set of project management values and practices. 
- Easy to combine with other agile methods 

• Hands-off approach:  
- No project manager or team leader (only a scrum master) 
- Team is empowered to make own decisions 

• Consists of roles, events, and artifacts 

• Iterations are called sprints 
- one month or less 
- time-boxed: duration is constant, features are dropped to meet 

the deadline.
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http://www.mountaingoatsoftware.com/agile/scrum/



Scrum: roles

• Product owner 
- represents the voice of the customer 

• Development team (scrum team) 
- 3 to 10 developers who produce the software 

• Scrum master 
- keeps team on track, makes sure Scrum is followed 
- Makes sure team is not interrupted, resolves blocks 
- intermediary between developers and management/stakeholders 

• Stakeholders and Managers 
- Stakeholders: customers/users/etc. 
- Managers development organization administrators
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Scrum: events

• Sprint planning meeting 
- Product owner, scrum team, and scrum master  
- Meet to decide what will be implemented in the next sprint 

• Daily scrum 
- Product owner, scrum team, scrum master  
- Stand-up meeting, 15-20 minutes 
- Each member gives progress report, future plans, and problems 

• Sprint review 
- held at end of sprint, attended by EVERYONE 
- product demo by developers, answer questions of customer/managers 

• Sprint retrospective (after sprint review) 
- Product owner, scrum team, scrum master  
- Discuss what they learned from sprint review and decide what to do next
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Scrum: artifacts

• Product backlog 
- ordered list of all remaining requirements 
- prioritized by product owner 

• Sprint backlog 
- ordered list of tasks that need to be done for current sprint 
- short (4-16 hours), chosen by developer 

• Increment 
- sum of all requirements implemented so far (the release) 

• Burn down chart 
- frequently updated, publicly displayed chart  
- shows remaining work from sprint backlog
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6. Scaling Agile methods

• Agile methods work well in certain conditions: 
- small and medium sized projects 
- small teams in one location 

• Can they work on larger projects? 

• Can they work for larger, distributed teams (in big 
companies)? 

!

• See the following paper (assignment 2): 
- Lindvall, Mikael, et al. "Agile software development in large 

organizations." IEEE Computer 37.12 (2004): 26-34.
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7. Choosing a process

• No process fits all projects.   
- even after a process model is chosen, it must be adapted to 

the project 

• Must adapt/adjust the process to 
- the project 
- the organizational culture 
- the people participating in it 

• Requires being familiar with 
- the characteristics of the project (size, stability of 

requirements, criticality of requirements). 
- the characteristics of the development organization. 
- the different variations of the process or process model.
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Risks/disadvantages of agile processes

• Difficult to scale agile methods to large systems 
- Agile methods better suited to small teams 

• Heavy reliance on teamwork  
- Not all people are able to work well in teams 

• Reliance on frequent access to customer 
- May be too expensive to have customer onsite (travel) 
- Large project may require too many customer representatives 

• Cultural clash 
- Many XP practices clash with formal processes and management 

techniques. 

• Not well-suited for security- or safety-critical systems  
- These depend on thorough analysis and documentation
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Advantages of agile processes

• Efficient handling of changes to requirements 

• Low process complexity 
- (relatively) easy to implement 

• Low cost and overhead  
- Most activities directly produce quality software 

• Fast results (rapid development) 
- Short iterations, core system produced up front 
- Produce final results faster 

• Usable systems 
- Final system is more likely to be Acceptable, due to customer 

involvement and quick response to changes.
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