
System Modeling
!
!

Chapter 5

!1

System Modeling
Outline:

I. What are system models?

II.System models:
1. Simple context diagram
2. UML class diagram
3. UML state diagram
4. Control flow diagram

!2

I. System Modeling

• System modeling is
- the process of developing abstract representations of a

system
- each model presents a different perspective of that system.

‣ static: represents structure
‣ dynamic: represents behavior 

• System models are Abstract
- Not an alternate representation
- Some details are left out

!3

System Modeling
• Models of the system are used in:

- Requirements development
❖ clarification, discussion

- Design process
❖ represent plans for implementation

• Models discussed in this class:
- Use case diagrams (ch. 4)
- Architectural design diagrams (ch. 6)
- Simple context diagrams (SRS)
- UML class diagrams (SRS)
- UML state diagrams
- Control flow diagrams

!4

UML=Unified Modeling Language

II - 1.Simple Context Model

• Used to define system boundaries
- indicates what is done by the system being developed,

and what will be done manually or by some other
system 

• Represented as a box and line diagram:
- Boxes show each of the systems involved
- Lines show interaction between systems
- System being developed is in the center

!5 !6

«system»
MHC-PMS

«system»
Patient record

system

«system»
Appointments

system

«system»
Admissions

system

«system»
Management

reporting
system

«system»
Prescription

system

«system»
HC statistics

system

Fig 5.1: The context of the MHC-PMS

!7

From the BSU Online Bookstore SRS:
Section 2.1 Product Perspective

• Arrowheads not necessary

• Database is often NOT external

• Include a diagram like this in your SRS

2. UML Class Diagrams
• Static model: represents structure, NOT behavior

• Shows object-oriented classes and associations
between them

• Uses:
- developing requirements: to model real-world objects
- during design phase: add implementation objects

• Simple class diagrams:
- Box represents a class (with a name)
- Lines show associations between classes (name optional)
- Number at each end to show how many objects can be

involved in the association (multiplicity)
!8

!9

Two classes and one association (a one-to-one relationship)
• Each patient has 1 patient record
• Each patient record belongs to 1 patient

Fig 5.8: UML Classes and association

Patient Patient
record

1 1

Patient Patient
record

1 1
Instructor Course

Section
1..*

Two classes and one association (a one-to-many relationship)
• Each instructor teaches one or more course sections (1..*)
• Each course section is taught by exactly 1 instructor.

!10

Fig 5.9: Classes and associations in the
MHC-PMS

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesruns

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

Condition - Patient is a many-to-many relationship
• Each patient has one or more condition
• Each condition may be had by one or more patients.

!11

Fig 5.10: Consultation class, in more detail

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...

Attributes,
types are optional

Operations, params +
return types optional

Note: Don’t record
associated classes here

(use arrows in the diagram)

Class name The class box may also
specify the attributes and
operations of the class.

Generalization (Inheritance)

• Act of identifying commonality among concepts,
defining:

- a general concept (base class)
- specialized concept(s) (derived class).

• Common attributes are stored in superclass only
- avoids duplication in diagram and code

• UML class diagram:
- Arrow points from derived classes to base class

• Example: University personnel
- Faculty, Staff, Students (graduate and undergrad)
- All university personnel have ID numbers
- All students have majors

!12

!13

Fig 5.12: Generalization in UML class diagram

Attributes + operations of
base class also belong to

subclass objects
(they are inherited)

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ()
de-register ()

Staff #
Pager #

Practice
Address

Derived class adds more
specific attributes + operations

Hospital doctors have a
phone # and a pager #

Aggregation (composition)

• When objects are composed of separate parts
- ex: a university class is composed of a faculty member

and several students

• UML class diagram:
- diamond at end of line closest to “whole” class

• When should you use a diamond?
- to represent that one object is a “part of” another
- there is no formal definition.

!14

!15

Fig 5.13: Aggregation in UML class diagram

Patient record

Patient Consultation

11

1 1..*

Class
Section

Faculty Student

**

The * alone indicates
“0 or more”

!16

From the BSU Online Bookstore SRS:
Section 3.4 Logical Structure of the Data

!17

From the BSU Online Bookstore SRS:
Section 3.4 Logical Structure of the Data

• Used to model “real world” objects
during requirements engineering

• No operations indicated.

• Associations with multiplicity ARE
indicated.

• Attribute types are NOT from C++, they
are more specific and more descriptive.

- Some include constraints

• Include a diagram like this in your SRS

3. UML State diagrams
• Dynamic model: represents behavior (not structure)

• Describes
- all the states an (object or component or system) can get into
- how state changes in response to specific events (transitions)

• Useful when object/component/system is changed by
events (real time and embedded systems, etc.)

- mouse click on certain element
- certain button is pushed
- sensor reports a certain value

!18

UML State diagrams

• Components of a state diagram:
- Rounded rectangles: system states
‣ includes what action to do in that state

- Labeled arrow: stimuli to force transition between states
‣ optional guard: transition allowed only when guard is true
‣ unlabeled arrow: transition occurs automatically when

action is complete

!19

Fig 5.16
State diagram of a microwave oven

!20

Diagram is missing (at least) one arrow

Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
 'Ready'

do: display
'Waiting'

Timer

Timer

4. Control Flow diagrams
aka Flowcharts

• Dynamic model: represents behavior (not structure)

• Not a UML model (it’s old school)
- the UML Activity diagram can model same information

• Describes:
- the flow of control through an algorithm or process
- branching using diamonds to represent decision points
- repetition or looping using “back arrows”

!21

Control Flow diagrams
• Components of a control flow diagram:

- Rounded rectangles: represent actions or processing
‣ input/output, storing/retrieving values, computation

- Arrow: shows flow of control, where to go next
‣ may return to a previous action, forming a loop.

- Diamond: contains yes/no question (or T/F)
‣ has two arrows coming out of it, one labeled “yes”, other

labeled “no”
- Start and end: rectangles indicating where algorithm starts

and stops.

!22

control flow diagram: example

!23

