System Modeling

Chapter 5

System Modeling

Outline:

I. What are system models?

[I.System models:
1. Simple context diagram
2. UML class diagram
3. UML state diagram
4. Control flow diagram

|. System Modeling

e System modeling is

- the process of developing abstract representations of a
system

- each model presents a different perspective of that system.

» static: represents structure
» dynamic: represents behavior

e System models are Abstract
- Not an alternate representation
- Some details are left out

System Modeling

e Models of the system are used in:

- Requirements development
+ clarification, discussion

- Design process
> represent plans for implementation

e Models discussed in this class:
- Use case diagrams (ch. 4)

- Architectural design diagrams (ch. 6)
- Simple context diagrams (SRS)

- UML class diagrams (
- UML state diagrams

- Control flow diagrams

SRS
) | UML=Unified Modeling Language

4

Il - 1.Simple Context Model

Used to define system boundaries

- indicates what is done by the system being developed,
and what will be done manually or by some other
system

Represented as a box and line diagram:
- Boxes show each of the systems involved
- Lines show interaction between systems
- System being developed is in the center

Fig 5.1: The context of the MHC-PMS

Patient record
system

Management
reporting
system

Admissions
system

MHC-PMS

HC statistics A \— Prescription

system system

Appointments
system

From the BSU Online Bookstore SRS:
Section 2.1 Product Perspective

Credit Card BSU Bookstore
Processing [€ > Online [€ > Inventory
System Bookstore Database

e Arrowheads not necessary
e Database is often NOT external

¢ Include a diagram like this in your SRS

2. UML Class Diagrams

Static model: represents structure, NOT behavior

Shows object-oriented classes and associations
between them

Uses:
- developing requirements: to model real-world objects
- during design phase: add implementation objects

Simple class diagrams:
- Boxrepresents a class (with a name)
- Lines show associations between classes (hname optional)

- Number at each end to show how many objects can be
involved in the association (multiplicity)

8

Fig 5.8: UML Classes and association

1 1 Patient
record

Patient

Two classes and one association (a one-to-one relationship)
» Each patient has 1 patient record
» Each patient record belongs to 1 patient

: Course
Instructor .
Section

Two classes and one association (a one-to-many relationship)
» Each instructor teaches one or more course sections (1..*)
« Each course section is taught by exactly 1 instructor.

Fig 5.9: Classes and associations in the
MHC-PMS

Consultant

1
referred-to
1.%

1 1 1.* "' General
Condition Patient P
diagnosed- referred-by | Practitioner
with 1.%
attends
1.%
) prescribes T
Consultation Medication
1.* 1.%
]__*
runs prescribes
1.4 Treatment
- 1.%
Hospital
Doctor

Condition - Patient is a many-to-many relationship

» Each patient has one or more condition

« Each condition may be had by one or more patients.
10

Fig 5.10: Consultation class, in more detail

cl 1 . The class box may also
ass name | Consultation specify the attributes and
operations of the class.
Beetors— P
Date
Time
Attributes, J Clinic
types are optional Reason | Note: Don't record
associated classes here
Voice notes (use arrows in the diagram)
Transcript
New (
Operations, params + Prescr(lj e ()
return types optional %2?105rcril\tl:2t((esi O

Generalization (Inheritance)

¢ Act of identifying commonality among concepts,
defining:
- ageneral concept (base class)
- specialized concept(s) (derived class).

e Common attributes are stored in superclass only
- avoids duplication in diagram and code

e UML class diagram:
- Arrow points from derived classes to base class

e Example: University personnel
- Faculty, Staff, Students (graduate and undergrad)
- All university personnel have ID numbers
- All students have majors
12

Fig 5.12: Generalization in UML class diagram

Doctor
Attributes + operations of Name
base class also belong to Phone #
subclass objects Email
(they are inherited) register ()
de-register ()

Aggregation (composition)

e When objects are composed of separate parts

- ex: auniversity class is composed of a faculty member
and several students

e UML class diagram:
- diamond at end of line closest to “whole” class

|

Hospital doctor

Staff #
Pager #

\

General practitioner

Practice
Address

e When should you use a diamond?
to represent that one object is a “part of” another

Derived class adds more

Hospital doctors have a
specific attributes + operations

phone # and a pager #

- there is no formal definition.

Fig 5.13: Aggregation in UML class diagram

From the BSU Online Bookstore SRS:
Section 3.4 Logical Structure of the Data

User

Class | The * alone indicates
Section “0 or more”
* *
e
Faculty Student

Address
Username | unique, at least 5 letters + digits ; Street Address String
Password at least 8 letters+digits, 1 cap
" - City String
First: string
Name Middle: char State 2 letters
Last: string Zip 5 or 9 digits
* 1
1 *
Credit Card Purchase: Line Item
N Stri
ame ng Total cost $XX.XX ISBN 13 digits
Number String 1
Expiration mmlyyyy Date date O—* Title String
Security 4 digits Conf Number String Quantity int, >0
Type V/MC/D/Amex

From the BSU Online Bookstore SRS:

Section 3.4 Logical Structure of the Data

Used to model “real world” objects
during requirements engineering

No operations indicated.

Associations with multiplicity ARE
indicated.

Attribute types are NOT from C++, they
are more specific and more descriptive.
Some include constraints

Include a diagram like this in your SRS

17

3. UML State diagrams

Dynamic model: represents behavior (not structure)

Describes
- all the states an (object or component or system) can get into
- how state changes in response to specific events (transitions)

Useful when object/component/system is changed by
events (real time and embedded systems, etc.)

- mouse click on certain element

- certain button is pushed

- sensor reports a certain value

UML State diagrams

Components of a state diagram:
Rounded rectangles: system states

4

includes what action to do in that state

Labeled arrow: stimuli to force transition between states

4
4

optional guard: transition allowed only when guard is true

unlabeled arrow: transition occurs automatically when
action is complete

Fig 5.16
State diagram of a microwave oven

Full
power —Full power
| do: set power
=600

Timer
Waiting

@ do: display Number

Full Set time Operation

power do: operate

do: get number
exit: set time

Door

Timer closed
Start
Door
open Door =
Half power Enabled open
do: set power Door | do: display do: display
=300 closed 'Ready' time
Disabled @

do: display
‘Waiting'

Diagram is missing (at least) one arrow

20

4. Control Flow diagrams
aka Flowcharts

e Dynamic model: represents behavior (not structure)
e Not a UML model (it’s old school)

- the UML Activity diagram can model same information

e Describes:
- the flow of control through an algorithm or process
- branching using diamonds to represent decision points
- repetition or looping using “back arrows”

21

Control Flow diagrams

Components of a control flow diagram:
Rounded rectangles: represent actions or processing
» input/output, storing/retrieving values, computation
Arrow: shows flow of control, where to go next
» may return to a previous action, forming a loop.
Diamond: contains yes/no question (or T/F)

» has two arrows coming out of it, one labeled “yes”, other
labeled “no”

Start and end: rectangles indicating where algorithm starts
and stops.

22

control flow diagram: example

M= M+1

23

