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Software Evolution  
in the textbook

1. Introduction 
• Importance and overview 

2. Evolution processes (9.1) 
• Change processes for software systems. 

3. Software maintenance (9.3) 
• Types and costs 
• Maintenance prediction 
• Software reengineering and refactoring
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Importance of evolution

• Software systems are critical and costly 
business assets. 

• Software must be changed/updated to maintain 
its value  

• Goal: use software many years to get return on 
investment 
- Air traffic control: 30 years 
- Business systems: 10 years 

• Large companies spend more on changing 
existing software than developing new software.
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Overview of software evolution 
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Specification Implemention

ValidationOperation

Start
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Release 2

Release 3

etc.

Bottom Line: All software processes become iterative development.

Before Release 1: 
“Development”

After Release 1: 
“Maintenance” 
(may NOT be handled 
by original developers) 



2 Evolution processes

• Software evolution processes depend on 
- The type of software being maintained 
- The development processes used 
- The skills and experience of the people involved. 

• Process may be informal or formal 

• Proposals for change are the driver for system 
evolution. 
- requests for new features 
- bug reports 
- ideas for improvements
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The software evolution process:
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See next slide 
for details

Decide which requests will be 
included in the next release

If evolution is handled by a team other than original development team: 
program understanding is an additional part of change implementation.

Change implementation: steps

• Modify Requirements 
- Analysis 
- Update specifications 
- Validation 

• Program understanding, as needed 

• Modify Design 
- Update design documents and/or models 

• Modify Implementation 
- Modify source code 

• Re-Testing
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Urgent change requests
• Sources of urgent changes 

- Defect somehow blocking normal operation 
- Changes to the system’s environment (e.g. OS upgrade) 
- Business changes requiring rapid response (e.g. the 

release of a competing product). 

• May not be able to follow formal change process 
- Quick and dirty code change 
- Minimal testing 

• Problem: 
- Code quality is diminished  
- Specs and code are now inconsistent 

• Should: follow formal process later.
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3. Software maintenance

• Modifying a program after it has been put into use. 

• The term is often applied to cases where a 
separate development team takes over after 
delivery. 
- Otherwise it’s just iterative development 

• Modifications may be simple or extensive 
- But NOT normally involving major changes to the 

system’s architecture.
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Types of maintenance

• Repairing software faults 
- Changing a system to correct coding, design, or 

requirements errors. 

• Adapting software to a different operating 
environment 
- Changing a system so that it operates with a modified 

external system (e.g. new OS, or other software). 

• Adding to or modifying the system’s functionality  
- Modifying the system to satisfy new requirements. 

10

Maintenance effort distribution
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Functionality
addition or

modification
(65%)

Fault repair
(17%)

Environmental
adaptation

(18%)

Development and maintenance costs 
“A stitch in time saves nine”
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In system 1, extra development costs are invested in making the 
system more maintainable, effectively reducing overall costs.



Maintenance cost factors 
why adding new functionality after delivery costs even more

• Team stability 
- New team members take time to learn the system. 

• Poor development practice 
- The developers of a system may have no incentive to write 

maintainable software if they won’t be maintaining it. 

• Staff skills 
- Maintenance staff are often inexperienced and have 

limited domain knowledge. 

• Program age and structure 
- As programs age, (without refactoring) their structure is 

degraded--they become harder to understand and change.
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Maintenance prediction
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• Estimating the overall maintenance costs for a 
system in a given time period (for planning purposes) 

• Studies have shown that  
- Most maintenance effort is spent on a relatively small number of 

system components. 
- The more complex a component, the more expensive it is to 

maintain. 

• Software metrics 
- Measure of a piece of software, to determine complexity 
- Lines of code, program size, number of objects, methods, etc. 
- cyclomatic complexity: number of execution paths through code 

Software reengineering
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• Problem: Many older systems are difficult to 
understand and change. 
- May have been optimized for performance or space. 
- Structure may have been corrupted by series of changes 
- May have been poorly designed or commented 

• Solution: Reengineering 
- Re-structuring or re-writing part or all of a software system 

without changing its functionality. 
- The system may be re-structured and re-documented to make 

it easier to maintain.

Software reengineering:  
Why not just rewrite from scratch?
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• Reengineering takes less time 
- Developing a new system almost always takes longer than 

expected. 
- Re-developing a system involves duplicating work that has 

already been done for the existing system. 
- No matter how bad the old system is, it can probably be 

greatly improved in less time than starting over again from 
scratch. 

• There is no guarantee the new system would be 
better. 

• Joel on Software: Things you should never do
http://www.joelonsoftware.com/articles/fog0000000069.html



Software reengineering techniques
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• Regression Testing 
- To ensure modifications don’t change functionality. 

• Source code translation 
- If it needs to be in a new language  

• Reverse engineering 
- Analyzing source code to determine its design/structure 
- This does not change the code, but produces documentation. 

• Program restructuring 
- Reorganize control structures and functions for understandability 

• Data reengineering 
- Clean-up and restructure system data.

Preventative maintenance by refactoring
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• Refactoring is: changing a software system: 
altering its internal structure without changing its 
external behavior  
- To improve readability. 
- To improve structure. 
- Reduce complexity. 
- Bottom line: easier to modify in the future 

• No added functionality 

• Preventative maintenance: reduces future 
maintenance costs

Refactoring versus Reengineering
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• Both alter the code without altering functionality, 
with the purpose of making code more 
maintainable. 

• Reengineering 
- Takes place after system is in use. 
- Applied when maintenance costs are too high. 
- Often involves running automated tools on legacy code. 

• Refactoring 
- Ongoing process, from start of development 
- Applied on smaller scale 
- Avoids structure degradation from the start

Where to apply refactoring 
(bad smells)
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• Duplicate code  
- Same or very similar code found at various places in a program.  
- Extract method: put similar code into a single method/function 

• Long method 
- Long methods are difficult to understand, modify. 
- Redesign as many shorter methods 

• Switch (case) statements 
- Multiple switch statements with same cases. 
- Make subclasses, move each case into appropriate subclass. 

• Data clumping 
- The same group of items occur in several places in a program.  
- Replace with an object that encapsulates all of the data (struct/obj) 

• Speculative generality  
- Unused parameters, classes, etc, included “just in case”. 
- These can often simply be removed



Refactoring example
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class Employee!
   double monthlySalary;!
   double commission;!
   double bonus;!
   int getType() { … }!
   int payAmount() {!
      switch (getType()) {!
         case ENGINEER:!
            return monthlySalary;!
         case SALESMAN:!
            return monthlySalary + commission;!
         case MANAGER:!
            return monthlySalary + bonus;!
         default:!
            throw new RuntimeException("Incorrect Employee");!
      }!
   }

Note: classes are incomplete: 
constructors, getters/setters 

are not shown.

Refactoring example
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class Employee…!
   double monthlySalary;!
   double commission;!
   double bonus;!
   int payAmount();!
}!
class Engineer : Employee!
   int payAmount() {!
      return monthlySalary;!
   }!
class Salesman : Employee!
   int payAmount() {!
      return monthlySalary + commission;!
   }!
class Manager : Employee!
   int payAmount() {!
      return monthlySalary + bonus;!
   }

Move cases into 
(new) subclasses

Refactoring example
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class Employee… {!
   double monthlySalary;!
   int payAmount();!
}!
class Engineer : Employee {!
   int payAmount() {!
      return monthlySalary;!
   } }!
class Salesman : Employee  {!
   double commission;!
   int payAmount() {!
      return monthlySalary + commission;!
   } }!
class Manager : Employee  {!
   double bonus;!
   int payAmount() {!
      return monthlySalary + bonus;!
   }!
}

Push down field: when a field is 
used only by some subclasses


