
Software Evolution
!
!

Chapter 9
(abridged)

1

Software Evolution
in the textbook

1. Introduction
• Importance and overview 

2. Evolution processes (9.1)
• Change processes for software systems. 

3. Software maintenance (9.3)
• Types and costs
• Maintenance prediction
• Software reengineering and refactoring

2

Importance of evolution

• Software systems are critical and costly
business assets.

• Software must be changed/updated to maintain
its value

• Goal: use software many years to get return on
investment
- Air traffic control: 30 years
- Business systems: 10 years

• Large companies spend more on changing
existing software than developing new software.

3

Overview of software evolution

4

Specification Implemention

ValidationOperation

Start

Release 1

Release 2

Release 3

etc.

Bottom Line: All software processes become iterative development.

Before Release 1:
“Development”

After Release 1:
“Maintenance”
(may NOT be handled
by original developers) 

2 Evolution processes

• Software evolution processes depend on
- The type of software being maintained
- The development processes used
- The skills and experience of the people involved.

• Process may be informal or formal

• Proposals for change are the driver for system
evolution.
- requests for new features
- bug reports
- ideas for improvements

5

The software evolution process:

6

Determine cost of
implementing change

Release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Platform
adaptation

System
enhancementFault repair

Bugs Change in
environment

New features

See next slide
for details

Decide which requests will be
included in the next release

If evolution is handled by a team other than original development team:
program understanding is an additional part of change implementation.

Change implementation: steps

• Modify Requirements
- Analysis
- Update specifications
- Validation

• Program understanding, as needed

• Modify Design
- Update design documents and/or models

• Modify Implementation
- Modify source code

• Re-Testing
7

Urgent change requests
• Sources of urgent changes

- Defect somehow blocking normal operation
- Changes to the system’s environment (e.g. OS upgrade)
- Business changes requiring rapid response (e.g. the

release of a competing product).

• May not be able to follow formal change process
- Quick and dirty code change
- Minimal testing

• Problem:
- Code quality is diminished
- Specs and code are now inconsistent

• Should: follow formal process later.
8

3. Software maintenance

• Modifying a program after it has been put into use.

• The term is often applied to cases where a
separate development team takes over after
delivery.
- Otherwise it’s just iterative development

• Modifications may be simple or extensive
- But NOT normally involving major changes to the

system’s architecture.

9

Types of maintenance

• Repairing software faults
- Changing a system to correct coding, design, or

requirements errors.

• Adapting software to a different operating
environment
- Changing a system so that it operates with a modified

external system (e.g. new OS, or other software).

• Adding to or modifying the system’s functionality
- Modifying the system to satisfy new requirements.

10

Maintenance effort distribution

11

Functionality
addition or

modification
(65%)

Fault repair
(17%)

Environmental
adaptation

(18%)

Development and maintenance costs
“A stitch in time saves nine”

12

0 50 100 150 200 250 300 350 400 450 500

System 1

System 2

Development costs Maintenance costs

$

In system 1, extra development costs are invested in making the
system more maintainable, effectively reducing overall costs.

Maintenance cost factors
why adding new functionality after delivery costs even more

• Team stability
- New team members take time to learn the system.

• Poor development practice
- The developers of a system may have no incentive to write

maintainable software if they won’t be maintaining it.

• Staff skills
- Maintenance staff are often inexperienced and have

limited domain knowledge.

• Program age and structure
- As programs age, (without refactoring) their structure is

degraded--they become harder to understand and change.

13

Maintenance prediction

14

• Estimating the overall maintenance costs for a
system in a given time period (for planning purposes)

• Studies have shown that
- Most maintenance effort is spent on a relatively small number of

system components.
- The more complex a component, the more expensive it is to

maintain.

• Software metrics
- Measure of a piece of software, to determine complexity
- Lines of code, program size, number of objects, methods, etc.
- cyclomatic complexity: number of execution paths through code

Software reengineering

15

• Problem: Many older systems are difficult to
understand and change.
- May have been optimized for performance or space.
- Structure may have been corrupted by series of changes
- May have been poorly designed or commented

• Solution: Reengineering
- Re-structuring or re-writing part or all of a software system

without changing its functionality.
- The system may be re-structured and re-documented to make

it easier to maintain.

Software reengineering:
Why not just rewrite from scratch?

16

• Reengineering takes less time
- Developing a new system almost always takes longer than

expected.
- Re-developing a system involves duplicating work that has

already been done for the existing system.
- No matter how bad the old system is, it can probably be

greatly improved in less time than starting over again from
scratch.

• There is no guarantee the new system would be
better.

• Joel on Software: Things you should never do
http://www.joelonsoftware.com/articles/fog0000000069.html

Software reengineering techniques

17

• Regression Testing
- To ensure modifications don’t change functionality.

• Source code translation
- If it needs to be in a new language

• Reverse engineering
- Analyzing source code to determine its design/structure
- This does not change the code, but produces documentation.

• Program restructuring
- Reorganize control structures and functions for understandability

• Data reengineering
- Clean-up and restructure system data.

Preventative maintenance by refactoring

18

• Refactoring is: changing a software system:
altering its internal structure without changing its
external behavior
- To improve readability.
- To improve structure.
- Reduce complexity.
- Bottom line: easier to modify in the future

• No added functionality

• Preventative maintenance: reduces future
maintenance costs

Refactoring versus Reengineering

19

• Both alter the code without altering functionality,
with the purpose of making code more
maintainable.

• Reengineering
- Takes place after system is in use.
- Applied when maintenance costs are too high.
- Often involves running automated tools on legacy code.

• Refactoring
- Ongoing process, from start of development
- Applied on smaller scale
- Avoids structure degradation from the start

Where to apply refactoring
(bad smells)

20

• Duplicate code
- Same or very similar code found at various places in a program.
- Extract method: put similar code into a single method/function

• Long method
- Long methods are difficult to understand, modify.
- Redesign as many shorter methods

• Switch (case) statements
- Multiple switch statements with same cases.
- Make subclasses, move each case into appropriate subclass.

• Data clumping
- The same group of items occur in several places in a program.
- Replace with an object that encapsulates all of the data (struct/obj)

• Speculative generality
- Unused parameters, classes, etc, included “just in case”.
- These can often simply be removed

Refactoring example

21

class Employee!
 double monthlySalary;!
 double commission;!
 double bonus;!
 int getType() { … }!
 int payAmount() {!
 switch (getType()) {!
 case ENGINEER:!
 return monthlySalary;!
 case SALESMAN:!
 return monthlySalary + commission;!
 case MANAGER:!
 return monthlySalary + bonus;!
 default:!
 throw new RuntimeException("Incorrect Employee");!
 }!
 }

Note: classes are incomplete:
constructors, getters/setters

are not shown.

Refactoring example

22

class Employee…!
 double monthlySalary;!
 double commission;!
 double bonus;!
 int payAmount();!
}!
class Engineer : Employee!
 int payAmount() {!
 return monthlySalary;!
 }!
class Salesman : Employee!
 int payAmount() {!
 return monthlySalary + commission;!
 }!
class Manager : Employee!
 int payAmount() {!
 return monthlySalary + bonus;!
 }

Move cases into
(new) subclasses

Refactoring example

23

class Employee… {!
 double monthlySalary;!
 int payAmount();!
}!
class Engineer : Employee {!
 int payAmount() {!
 return monthlySalary;!
 } }!
class Salesman : Employee {!
 double commission;!
 int payAmount() {!
 return monthlySalary + commission;!
 } }!
class Manager : Employee {!
 double bonus;!
 int payAmount() {!
 return monthlySalary + bonus;!
 }!
}

Push down field: when a field is
used only by some subclasses

