## Recursion

Week 10

## Gaddis:19.1-19.5

CS 5301
Spring 2014
Jill Seaman

## What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself:

}

```
void message() {
```

void message() {
cout << "This is a recursive function.\n";
cout << "This is a recursive function.\n";
message();
message();
}
}
int main() {
int main() {
message();
message();
Whathappens when this is executed?

```
        Whathappens when this is executed?
```


## Recursive message() modified

- How about this one?

```
void message(int n) {
    if (n > 0) {
        cout << "This is a recursive function.\n";
        message(n-1);
    }
}
int main() {
    message(5);
}
```


## How can a function call itself?

- Infinite Recursion:

```
This is a recursive function.
```

...

## Tracing the calls

- 6 nested calls to message:

```
message(5):
    outputs "This is a recursive function"
    calls message(4):
        outputs "This is a recursive function"
        calls message(3):
            outputs "This is a recursive function"
            calls message(2):
                outputs "This is a recursive function"
            calls message(1):
                outputs "This is a recursive function"
                calls message(0):
                    does nothing, just returns
```

- depth of recursion (\#times it calls itself) $=5$.


## How to write recursive functions

- Branching is required (If or switch)
- Find a base case
- one (or more) values for which the result of the function is known (no repetition required to solve it)
- no recursive call is allowed here
- Develop the recursive case

For a given argument (say n), assume the function works for a smaller value ( $n-1$ ).
Use the result of calling the function on $\mathrm{n}-1$ to form a solution for n

## Why use recursion?

- It is true that recursion is never required to solve a problem
- Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources


## However:

- Some repetitive problems are more easily and naturally solved with recursion
- the recursive solution is often shorter, more elegant, easier to read and debug.


## Recursive function example <br> factorial

- Mathematical definition of $n$ ! (factorial of $n$ )

```
if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x m .. x n
```

-What is the base case?

- $\mathrm{n}=0$ (the result is 1 )
- Recursive case: If we assume ( $\mathrm{n}-1$ )! can be computed, how can we get n ! from that?
$n!=n$ * $n-1)$ !

```
Recursive function example
factorial
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
int main() {
    int number;
    cout << "Enter a number ".
    cin >> number;
    cout << "The factorial of " << number << " is "
        << factorial(number) << endl:
}
```


## Recursive functions over ints

- Many recursive functions (over integers) look like this:

```
type f(int n) {
    if ( }\textrm{n}==0\mathrm{ )
        //do the base case
    else
        // ... f(n-1) ...
```


## Tracing the calls

- Calls to factorial:

```
factorial(4):
    return 4 * factorial(3); =4 * 6 = 24
    calls factorial(3):
        return 3 * factorial(2); =3*2=6
        calls factorial(2):
            return 2 * factorial(1); =2 * 1=2
            calls factorial(1):
                return 1 * factorial(0); =1*1=1
                calls factorial(0):
                    return 1;
```

Every call except the last makes a recursive call

- Each call makes the argument smaller


## Recursive functions over lists

- You can write recursive functions over lists using the length of the list instead of $n$
- base case: length=0 ==> empty list
- recursive case: assume f works for list of length n-1, what is the answer for a list with one more element?
- We will do examples with:
- arrays
- strings
- later: linked lists


## Recursive function example <br> sum of the list

- Recursive function to compute sum of a list of numbers
- What is the base case?

```
- length=0 (empty list) => sum = 0
```

- If we assume we can sum the first $\mathrm{n}-1$ items in the list, how can we get the sum of the whole list from that?

```
- sum (list) = sum (list[0..n-2]) + list[n-1]
Assume I am given the answer to this
```


## Recursive function example

 count character occurrences in a string- Recursive function to count the number of times a specific character appears in a string
- We will use the string member function substr to make a smaller string
- str.substr (int pos, int length);
- pos is the starting position in str
- length is the number of characters in the result
string $x=$ "hello there";
cout << x.substr(3,5);
- char access: $x[1]$ is the second element ('e')


## Recursive function example

sum of a list (array)
int sum(int a[], int size) \{ //size is number of elems if (size==0)
return 0
else
return $\operatorname{sum}(a, s i z e-1)+a[s i z e-1] ;$
\}
call sum on first n -1 elements The last element
For a list with size $=4: \operatorname{sum}(a, 4)$

$$
\operatorname{sum}(a, 3)+a[3]=
$$

$\operatorname{sum}(a, 2)+a[2]+a[3]=$
$\operatorname{sum}(a, 1)+a[1]+a[2]+a[3]=$
$\operatorname{sum}(a, 0)+a[0]+a[1]+a[2]+a[3]=$
$0+a[0]+a[1]+a[2]+a[3]$

## Recursive function example

count character occurrences in a string

```
int numChars(char target, string str) {
    if (str.empty()) {
        return 0;
    } else {
        int result = numChars(search, str.substr(1,str.size()));
        if (str[0]==target)
            return 1+result;
        else
            return result;
    }
}
int main() {
    string a = "hello";
    cout << a << numChars('l',a) << endl;
}

\section*{Three required properties \\ of recursive functions}

\section*{- A Base case}
- a non-recursive branch of the function body.
- must return the correct result for the base case
- Smaller caller
each recursive call must pass a smaller version of the current argument.
- Recursive case
- assuming the recursive call works correctly, the code must produce the correct answer for the current argument.

\section*{Recursive function example \\ greatest common divisor}
- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers evenly (without a remainder)
- This is a variant of Euclid's algorithm:
```

gcd}(x,y)=y\quad if y divides x evenly, otherwise:
gcd(x,y) = gcd(y,remainder of x/y) (or gcd(y,x%y) in c++)

```
- It's a recursive definition
- If \(x<y\), then \(x \% y\) is \(x(\operatorname{sogcd}(x, y)=\operatorname{gcd}(y, x))\)
- This moves the larger number to the first position. 18

\section*{Recursive function example}
greatest common divisor
- Code:
```

int gcd(int x, int y) {
cout << "gcd called with " << x << " and " << y << endl;
if (x % y == 0) {
return y;
} else {
return gcd(y, x % y);
}
}
int main() {
cout << "GCD(9,1): " << gcd(9,1) << endl;
cout << "GCD(1,9): " << gcd(1,9) << endl;
cout << "GCD(9,2): " << gcd(9,2) << endl;
cout << "GCD(70,25): " << gcd(70,25) << endl;
cout << "GCD(25,70): " << gcd(25,70) << endl;
\}

## Recursive function example

greatest common divisor

- Output:
gcd called with 9 and 1

$$
\operatorname{GCD}(9,1): 1
$$

gcd called with 1 and 9 gcd called with 9 and 1 GCD $(1,9): 1$
gcd called with 9 and 2 gcd called with 2 and 1 $\operatorname{GCD}(9,2): 1$
gcd called with 70 and 25 gcd called with 25 and 20 gcd called with 20 and 5 $\operatorname{GCD}(70,25): 5$
gcd called with 25 and 70 gcd called with 70 and 25 gcd called with 25 and 20 gcd called with 20 and 5 $\operatorname{GCD}(25,70): 5$

## Recursive function example

Fibonacci numbers

- Series of Fibonacci numbers:

```
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
```

- Starts with 0,1 . Then each number is the sum of the two previous numbers

```
Fo = 0
F
Fi}=\mp@subsup{F}{i-1}{}+\mp@subsup{F}{i-2}{}\quad(for i > 1
```

- It's a recursive definition


## Recursive function example

- Code:

```
int fib(int x) {
    if (x<=1)
        //takes care of 0 and 1
        return x;
        else
        return fib(x-1) + fib(x-2);
}
int main() {
    cout << "The first 13 fibonacci numbers: " << endl;
    for (int i=0; i<13; i++)
        cout << fib(i) << " ";
    cout << endl;
```

\}

| The | first | 13 |  | fibonacci |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 |

## Recursive functions over linked lists

- Recursive functions can be members of a linked list class
These functions take a pointer to the list ( $p$ ) as a parameter
They compute the function for the list starting at the node p points to.
- The pattern:
- base case: empty list, when p is NULL
- recursive case: assume $f$ works for list starting at p->next, what is the answer for a list with one more element (the list starting at $p$ )?


## Recursive function example

count the number of nodes in a list

## class NumberList <br> f

private:
struct ListNode
double value;
struct ListNode *next;
\};
ListNode *head;
int countNodes(ListNode *); //private version

## public:

NumberList();
NumberList(const NumberList \& src);
$\sim$ NumberList();
void appendNode(double);
void appendNode(double);
void insertNode(double);
void insertNode(double);
void displayList();
int countNodes();
//public version, calls private

## Recursive function example

 display the node values in reverse order// the private version, needs a pointer parameter
void NumberList: :reverseDisplay(ListNode *p) \{
if ( $p==$ NULL) \{
//do nothing
\} else \{
//display the "rest" of the list in reverse order reverseDisplay(p->next);
cout << p->value << " ";
\}
\}
// the public version, no arguments
void NumberList::reverseDisplay() \{
reverseDisplay(head);
cout << endl;
\}

## Recursive function example <br> count the number of nodes in a list

// the private version, needs a pointer parameter
// How many nodes are in the list starting at the pointer?
int NumberList: :countNodes(ListNode *p) \{
if ( $p==$ NULL)
return 0;
else
return $1+$ countNodes(p->next);
$\}$
// the public version, no arguments (Nodes are private)
// calls the recursive function starting at head
int NumberList: :countNodes() \{
return countNodes(head);
\}
Note that this function is overloaded

## Recursive function example

calling the functions from main

```
int main() {
    NumberList list;
    for (int i=0; i<5; i++)
        list.insertNode(i);
    cout << "The number of nodes is " << list.countNodes()
        << endl;
    cout << "The values in reverse order are: ";
    list.reverseDisplay();
}
```

